In situ analysis of spatial relationships between proteins of the nuclear pore complex - PubMed (original) (raw)
In situ analysis of spatial relationships between proteins of the nuclear pore complex
Marc Damelin et al. Biophys J. 2002 Dec.
Abstract
Macromolecular transport between the nucleus and cytoplasm occurs through the nuclear pore complexes (NPCs). The NPC in the budding yeast Saccharomyces cerevisiae is a 60-MDa structure embedded in the nuclear envelope and composed of ~30 proteins, termed nucleoporins or nups. Here we present a large-scale analysis of spatial relationships between nucleoporins using fluorescence resonance energy transfer (FRET) in living yeast cells. Energy transfer was measured in a panel of strains, each of which coexpresses the enhanced cyan and yellow fluorescent proteins as fusions to distinct nucleoporins. With this approach, we have determined 13 nucleoporin pairs yielding FRET signals. Independent experiments are consistent with the FRET results: Nup120 localization is perturbed in the nic96-1 mutant, as is Nup82 localization in the nup116Delta mutant. To better understand the spatial relationship represented by an in vivo FRET signal, we have investigated the requirements of these signals. We demonstrate that in one case FRET signal is lost upon insertion of a short spacer between the nucleoporin and its enhanced yellow fluorescent protein label. We also show that the Nup120 FRET signals depend on whether the fluorescent moiety is fused to the N- or C-terminus of Nup120. Combined with existing data on NPC structure, the FRET pairs identified in this study allow us to propose a refined molecular model of the NPC. We suggest that the approach may serve as a prototype for the in situ study of other large macromolecular complexes.
Similar articles
- Structural basis of the nic96 subcomplex organization in the nuclear pore channel.
Schrader N, Stelter P, Flemming D, Kunze R, Hurt E, Vetter IR. Schrader N, et al. Mol Cell. 2008 Jan 18;29(1):46-55. doi: 10.1016/j.molcel.2007.10.022. Mol Cell. 2008. PMID: 18206968 - [Nuclear pores: from yeast to higher eukaryotes].
Doye V. Doye V. J Soc Biol. 2002;196(4):349-54. J Soc Biol. 2002. PMID: 12645306 Review. French. - Quantifying nucleoporin stoichiometry inside single nuclear pore complexes in vivo.
Mi L, Goryaynov A, Lindquist A, Rexach M, Yang W. Mi L, et al. Sci Rep. 2015 Mar 23;5:9372. doi: 10.1038/srep09372. Sci Rep. 2015. PMID: 25797490 Free PMC article. - Architecture of the linker-scaffold in the nuclear pore.
Petrovic S, Samanta D, Perriches T, Bley CJ, Thierbach K, Brown B, Nie S, Mobbs GW, Stevens TA, Liu X, Tomaleri GP, Schaus L, Hoelz A. Petrovic S, et al. Science. 2022 Jun 10;376(6598):eabm9798. doi: 10.1126/science.abm9798. Epub 2022 Jun 10. Science. 2022. PMID: 35679425 Free PMC article. - The structure of the nuclear pore complex.
Hoelz A, Debler EW, Blobel G. Hoelz A, et al. Annu Rev Biochem. 2011;80:613-43. doi: 10.1146/annurev-biochem-060109-151030. Annu Rev Biochem. 2011. PMID: 21495847 Review.
Cited by
- Retroviruses and yeast retrotransposons use overlapping sets of host genes.
Irwin B, Aye M, Baldi P, Beliakova-Bethell N, Cheng H, Dou Y, Liou W, Sandmeyer S. Irwin B, et al. Genome Res. 2005 May;15(5):641-54. doi: 10.1101/gr.3739005. Epub 2005 Apr 18. Genome Res. 2005. PMID: 15837808 Free PMC article. - Sac3 is an mRNA export factor that localizes to cytoplasmic fibrils of nuclear pore complex.
Lei EP, Stern CA, Fahrenkrog B, Krebber H, Moy TI, Aebi U, Silver PA. Lei EP, et al. Mol Biol Cell. 2003 Mar;14(3):836-47. doi: 10.1091/mbc.e02-08-0520. Mol Biol Cell. 2003. PMID: 12631707 Free PMC article. - Centrin 2 localizes to the vertebrate nuclear pore and plays a role in mRNA and protein export.
Resendes KK, Rasala BA, Forbes DJ. Resendes KK, et al. Mol Cell Biol. 2008 Mar;28(5):1755-69. doi: 10.1128/MCB.01697-07. Epub 2008 Jan 2. Mol Cell Biol. 2008. PMID: 18172010 Free PMC article. - Combining guilt-by-association and guilt-by-profiling to predict Saccharomyces cerevisiae gene function.
Tian W, Zhang LV, Taşan M, Gibbons FD, King OD, Park J, Wunderlich Z, Cherry JM, Roth FP. Tian W, et al. Genome Biol. 2008;9 Suppl 1(Suppl 1):S7. doi: 10.1186/gb-2008-9-s1-s7. Epub 2008 Jun 27. Genome Biol. 2008. PMID: 18613951 Free PMC article. - A fluorescence resonance energy transfer-derived structure of a quantum dot-protein bioconjugate nanoassembly.
Medintz IL, Konnert JH, Clapp AR, Stanish I, Twigg ME, Mattoussi H, Mauro JM, Deschamps JR. Medintz IL, et al. Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9612-7. doi: 10.1073/pnas.0403343101. Epub 2004 Jun 21. Proc Natl Acad Sci U S A. 2004. PMID: 15210939 Free PMC article.
References
- J Cell Sci. 2002 Apr 15;115(Pt 8):1703-15 - PubMed
- J Cell Biol. 2000 Feb 21;148(4):635-51 - PubMed
- Mol Biol Cell. 2002 May;13(5):1522-35 - PubMed
- Methods Enzymol. 2002;351:34-49 - PubMed
- Annu Rev Biochem. 1978;47:819-46 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases