Mobile genetic elements in protozoan parasites - PubMed (original) (raw)
Review
Mobile genetic elements in protozoan parasites
Sudha Bhattacharya et al. J Genet. 2002 Aug.
Abstract
Mobile genetic elements, by virtue of their ability to move to new chromosomal locations, are considered important in shaping the evolutionary course of the genome. They are widespread in the biological kingdom. Among the protozoan parasites several types of transposable elements are encountered. The largest variety is seen in the trypanosomatids-Trypanosoma brucei, Trypanosoma cruzi and Crithidia fasciculata. They contain elements that insert site-specifically in the spliced-leader RNA genes, and others that are dispersed in a variety of genomic locations. Giardia lamblia contains three families of transposable elements. Two of these are subtleomeric in location while one is chromosome-internal. Entamoeba histolytica has an abundant retrotransposon dispersed in the genome. Nucleotide sequence analysis of all the elements shows that they are all retrotransposons, and, with the exception of one class of elements in T. cruzi, all of them are non-long-terminal-repeat retrotransposons. Although most copies have accumulated mutations, they can potentially encode reverse transcriptase, endonuclease and nucleic-acid-binding activities. Functionally and phylogenetically they do not belong to a single lineage, showing that retrotransposons were acquired early in the evolution of protozoan parasites. Many of the potentially autonomous elements that encode their own transposition functions have nonautonomous counterparts that probably utilize the functions in trans. In this respect these elements are similar to the mammalian LINEs and SINEs (long and short interspersed DNA elements), showing a common theme in the evolution of retrotransposons. So far there is no report of a DNA transposon in any protozoan parasite. The genome projects that are under way for most of these organisms will help understand the evolution and possible function of these genetic elements.
Similar articles
- The non-LTR retrotransposons of Entamoeba histolytica: genomic organization and biology.
Kaur D, Agrahari M, Bhattacharya A, Bhattacharya S. Kaur D, et al. Mol Genet Genomics. 2022 Jan;297(1):1-18. doi: 10.1007/s00438-021-01843-5. Epub 2022 Jan 9. Mol Genet Genomics. 2022. PMID: 34999963 Review. - Ancient lineages of non-LTR retrotransposons in the primitive eukaryote, Giardia lamblia.
Burke WD, Malik HS, Rich SM, Eickbush TH. Burke WD, et al. Mol Biol Evol. 2002 May;19(5):619-30. doi: 10.1093/oxfordjournals.molbev.a004121. Mol Biol Evol. 2002. PMID: 11961096 - Three retrotransposon families in the genome of Giardia lamblia: two telomeric, one dead.
Arkhipova IR, Morrison HG. Arkhipova IR, et al. Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14497-502. doi: 10.1073/pnas.231494798. Proc Natl Acad Sci U S A. 2001. PMID: 11734649 Free PMC article. - The LINEs and SINEs of Entamoeba histolytica: comparative analysis and genomic distribution.
Bakre AA, Rawal K, Ramaswamy R, Bhattacharya A, Bhattacharya S. Bakre AA, et al. Exp Parasitol. 2005 Jul;110(3):207-13. doi: 10.1016/j.exppara.2005.02.009. Epub 2005 Mar 23. Exp Parasitol. 2005. PMID: 15955314 - RNA interference in protozoan parasites.
Ullu E, Tschudi C, Chakraborty T. Ullu E, et al. Cell Microbiol. 2004 Jun;6(6):509-19. doi: 10.1111/j.1462-5822.2004.00399.x. Cell Microbiol. 2004. PMID: 15104593 Review.
Cited by
- Mobilome of Apicomplexa Parasites.
Rodriguez M, Makalowski W. Rodriguez M, et al. Genes (Basel). 2022 May 16;13(5):887. doi: 10.3390/genes13050887. Genes (Basel). 2022. PMID: 35627271 Free PMC article. - The Intricate Evolutionary Balance between Transposable Elements and Their Host: Who Will Kick at Goal and Convert the Next Try?
Yoth M, Jensen S, Brasset E. Yoth M, et al. Biology (Basel). 2022 May 6;11(5):710. doi: 10.3390/biology11050710. Biology (Basel). 2022. PMID: 35625438 Free PMC article. Review. - The non-LTR retrotransposons of Entamoeba histolytica: genomic organization and biology.
Kaur D, Agrahari M, Bhattacharya A, Bhattacharya S. Kaur D, et al. Mol Genet Genomics. 2022 Jan;297(1):1-18. doi: 10.1007/s00438-021-01843-5. Epub 2022 Jan 9. Mol Genet Genomics. 2022. PMID: 34999963 Review. - Comparison of loop-mediated isothermal amplification (LAMP) and PCR for the diagnosis of infection with Trypanosoma brucei ssp. in equids in The Gambia.
Gummery L, Jallow S, Raftery AG, Bennet E, Rodgers J, Sutton DGM. Gummery L, et al. PLoS One. 2020 Aug 24;15(8):e0237187. doi: 10.1371/journal.pone.0237187. eCollection 2020. PLoS One. 2020. PMID: 32833981 Free PMC article. - Comparative evaluation of dry and liquid RIME LAMP in detecting trypanosomes in dead tsetse flies.
Nambala P, Musaya J, Hayashida K, Maganga E, Senga E, Kamoto K, Chisi J, Sugimoto C. Nambala P, et al. Onderstepoort J Vet Res. 2018 Oct 3;85(1):e1-e6. doi: 10.4102/ojvr.v85i1.1543. Onderstepoort J Vet Res. 2018. PMID: 30326717 Free PMC article.
References
- Mol Biochem Parasitol. 1999 May 25;100(2):173-83 - PubMed
- Mol Biochem Parasitol. 2001 Aug;116(1):45-53 - PubMed
- J Mol Evol. 1996 Dec;43(6):572-83 - PubMed
- Annu Rev Microbiol. 1989;43:403-34 - PubMed
- Trends Genet. 1989 Apr;5(4):103-7 - PubMed