Prediction and uncertainty in the analysis of gene expression profiles - PubMed (original) (raw)
Affiliations
- PMID: 12542420
Prediction and uncertainty in the analysis of gene expression profiles
Rainer Spang et al. In Silico Biol. 2002.
Abstract
We have developed a complete statistical model for the analysis of tumor specific gene expression profiles. The approach provides investigators with a global overview on large scale gene expression data, indicating aspects of the data that relate to tumor phenotype, but also summarizing the uncertainties inherent in classification of tumor types. We demonstrate the use of this method in the context of a gene expression profiling study of 27 human breast cancers. The study is aimed at defining molecular characteristics of tumors that reflect estrogen receptor tatus. In addition to good predictive performance with respect to pure classification of the expression profiles, the model also uncovers conflicts in the data with respect to the classification of some of the tumors, highlighting them as critical cases for which additional investigations are appropriate.
Similar articles
- A hierarchical Naïve Bayes Model for handling sample heterogeneity in classification problems: an application to tissue microarrays.
Demichelis F, Magni P, Piergiorgi P, Rubin MA, Bellazzi R. Demichelis F, et al. BMC Bioinformatics. 2006 Nov 24;7:514. doi: 10.1186/1471-2105-7-514. BMC Bioinformatics. 2006. PMID: 17125514 Free PMC article. - Predicting features of breast cancer with gene expression patterns.
Lu X, Lu X, Wang ZC, Iglehart JD, Zhang X, Richardson AL. Lu X, et al. Breast Cancer Res Treat. 2008 Mar;108(2):191-201. doi: 10.1007/s10549-007-9596-6. Epub 2007 May 22. Breast Cancer Res Treat. 2008. PMID: 18297396 - Gene expression profiles of breast cancer obtained from core cut biopsies before neoadjuvant docetaxel, adriamycin, and cyclophoshamide chemotherapy correlate with routine prognostic markers and could be used to identify predictive signatures.
Rody A, Karn T, Gätje R, Kourtis K, Minckwitz G, Loibl S, Munnes M, Ruckhäberle E, Holtrich U, Kaufmann M, Ahr A. Rody A, et al. Zentralbl Gynakol. 2006 Apr;128(2):76-81. doi: 10.1055/s-2006-921508. Zentralbl Gynakol. 2006. PMID: 16673249 Clinical Trial. - Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data.
Gui J, Li H. Gui J, et al. Bioinformatics. 2005 Jul 1;21(13):3001-8. doi: 10.1093/bioinformatics/bti422. Epub 2005 Apr 6. Bioinformatics. 2005. PMID: 15814556 - Genomics and proteomics of bone cancer.
Marguiles AG, Klimberg VS, Bhattacharrya S, Gaddy D, Suva LJ. Marguiles AG, et al. Clin Cancer Res. 2006 Oct 15;12(20 Pt 2):6217s-6221s. doi: 10.1158/1078-0432.CCR-06-1070. Clin Cancer Res. 2006. PMID: 17062704 Review.
Cited by
- Integrated modeling of clinical and gene expression information for personalized prediction of disease outcomes.
Pittman J, Huang E, Dressman H, Horng CF, Cheng SH, Tsou MH, Chen CM, Bild A, Iversen ES, Huang AT, Nevins JR, West M. Pittman J, et al. Proc Natl Acad Sci U S A. 2004 Jun 1;101(22):8431-6. doi: 10.1073/pnas.0401736101. Epub 2004 May 19. Proc Natl Acad Sci U S A. 2004. PMID: 15152076 Free PMC article. - Entropy-based gene ranking without selection bias for the predictive classification of microarray data.
Furlanello C, Serafini M, Merler S, Jurman G. Furlanello C, et al. BMC Bioinformatics. 2003 Nov 6;4:54. doi: 10.1186/1471-2105-4-54. BMC Bioinformatics. 2003. PMID: 14604446 Free PMC article. - Selection bias in gene extraction on the basis of microarray gene-expression data.
Ambroise C, McLachlan GJ. Ambroise C, et al. Proc Natl Acad Sci U S A. 2002 May 14;99(10):6562-6. doi: 10.1073/pnas.102102699. Epub 2002 Apr 30. Proc Natl Acad Sci U S A. 2002. PMID: 11983868 Free PMC article. - Knowledge-based gene expression classification via matrix factorization.
Schachtner R, Lutter D, Knollmüller P, Tomé AM, Theis FJ, Schmitz G, Stetter M, Vilda PG, Lang EW. Schachtner R, et al. Bioinformatics. 2008 Aug 1;24(15):1688-97. doi: 10.1093/bioinformatics/btn245. Epub 2008 Jun 5. Bioinformatics. 2008. PMID: 18535085 Free PMC article. - High-Dimensional Sparse Factor Modeling: Applications in Gene Expression Genomics.
Carvalho CM, Chang J, Lucas JE, Nevins JR, Wang Q, West M. Carvalho CM, et al. J Am Stat Assoc. 2008 Dec 1;103(484):1438-1456. doi: 10.1198/016214508000000869. J Am Stat Assoc. 2008. PMID: 21218139 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources