New microRNAs from mouse and human - PubMed (original) (raw)
New microRNAs from mouse and human
Mariana Lagos-Quintana et al. RNA. 2003 Feb.
Abstract
MicroRNAs (miRNAs) represent a new class of noncoding RNAs encoded in the genomes of plants, invertebrates, and vertebrates. MicroRNAs regulate translation and stability of target mRNAs based on (partial) sequence complementarity. Although the number of newly identified miRNAs is still increasing, target mRNAs of animal miRNAs remain to be identified. Here we describe 31 novel miRNAs that were identified by cloning from mouse tissues and the human Saos-2 cell line. Fifty-three percent of all known mouse and human miRNAs have homologs in Fugu rubripes (pufferfish) or Danio rerio (zebrafish), of which almost half also have a homolog in Caenorhabditis elegans or Drosophila melanogaster. Because of the recurring identification of already known miRNAs and the unavoidable background of ribosomal RNA breakdown products, it is believed that not many more miRNAs may be identified by cloning. A comprehensive collection of miRNAs is important for assisting bioinformatics target mRNA identification and comprehensive genome annotation.
Figures
FIGURE 1.
MicroRNA gene clusters. The precursor structure is indicated as a box, and the location of the miRNA within the precursor is shown in black. The clusters are transcribed from left to right. To the right, the chromosome location is indicated for human/mouse. The cluster of mir-183 and mir-182 is also conserved in zebrafish.
Similar articles
- Identification of tissue-specific microRNAs from mouse.
Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Lagos-Quintana M, et al. Curr Biol. 2002 Apr 30;12(9):735-9. doi: 10.1016/s0960-9822(02)00809-6. Curr Biol. 2002. PMID: 12007417 - Managing the genome: microRNAs in Drosophila.
Gesellchen V, Boutros M. Gesellchen V, et al. Differentiation. 2004 Mar;72(2-3):74-80. doi: 10.1111/j.1432-0436.2004.07202003.x. Differentiation. 2004. PMID: 15066187 Review. - Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets.
Wang XJ, Reyes JL, Chua NH, Gaasterland T. Wang XJ, et al. Genome Biol. 2004;5(9):R65. doi: 10.1186/gb-2004-5-9-r65. Epub 2004 Aug 31. Genome Biol. 2004. PMID: 15345049 Free PMC article. - Intron-mediated RNA interference, intronic microRNAs, and applications.
Ying SY, Chang CP, Lin SL. Ying SY, et al. Methods Mol Biol. 2010;629:205-37. doi: 10.1007/978-1-60761-657-3_14. Methods Mol Biol. 2010. PMID: 20387152 - Intron-mediated RNA interference and microRNA biogenesis.
Ying SY, Lin SL. Ying SY, et al. Methods Mol Biol. 2009;487:387-413. doi: 10.1007/978-1-60327-547-7_19. Methods Mol Biol. 2009. PMID: 19301658 Review.
Cited by
- Distribution of miRNA genes in the pig genome.
Paczynska P, Grzemski A, Szydlowski M. Paczynska P, et al. BMC Genet. 2015 Jan 30;16(1):6. doi: 10.1186/s12863-015-0166-3. BMC Genet. 2015. PMID: 25632794 Free PMC article. - Profiling microRNAs in lung tissue from pigs infected with Actinobacillus pleuropneumoniae.
Podolska A, Anthon C, Bak M, Tommerup N, Skovgaard K, Heegaard PM, Gorodkin J, Cirera S, Fredholm M. Podolska A, et al. BMC Genomics. 2012 Sep 6;13:459. doi: 10.1186/1471-2164-13-459. BMC Genomics. 2012. PMID: 22953717 Free PMC article. - Expression profiling and functional characterization of miR-192 throughout sheep skeletal muscle development.
Zhao Q, Kang Y, Wang HY, Guan WJ, Li XC, Jiang L, He XH, Pu YB, Han JL, Ma YH, Zhao QJ. Zhao Q, et al. Sci Rep. 2016 Jul 25;6:30281. doi: 10.1038/srep30281. Sci Rep. 2016. PMID: 27452271 Free PMC article. - The microRNA mir-71 inhibits calcium signaling by targeting the TIR-1/Sarm1 adaptor protein to control stochastic L/R neuronal asymmetry in C. elegans.
Hsieh YW, Chang C, Chuang CF. Hsieh YW, et al. PLoS Genet. 2012;8(8):e1002864. doi: 10.1371/journal.pgen.1002864. Epub 2012 Aug 2. PLoS Genet. 2012. PMID: 22876200 Free PMC article. - Systematic analysis of genomic organization and heterogeneities of miRNA cluster in vertebrates.
Sun J, Liu HP, Deng JE, Zhou M. Sun J, et al. Mol Biol Rep. 2012 May;39(5):5143-9. doi: 10.1007/s11033-011-1310-4. Epub 2011 Dec 11. Mol Biol Rep. 2012. PMID: 22160431
References
- Ambros, V. 2000. Control of developmental timing in Caenorhabditis elegans. Curr. Opin. Genet. Dev. 10: 428–433. - PubMed
- Bullrich, F., Fujii, H., Calin, G., Mabuchi, H., Negrini, M., Pekarsky, Y., Rassenti, L., Alder, H., Reed, J.C., Keating, M.J., et al. 2001. Characterization of the 13q14 tumor suppressor locus in CLL: Identification of ALT1, an alternative splice variant of the LEU2 gene. Cancer Res. 61: 6640–6648. - PubMed
- Conne, B., Stutz, A., and Vassalli, J.D. 2000. The 3′ untranslated region of messenger RNA: A molecular ‘hotspot’ for pathology? Nat. Med. 6: 637–641. - PubMed
- Grishok, A., Pasquinelli, A.E., Conte, D., Li, N., Parrish, S., Ha, I., Baillie, D.L., Fire, A., Ruvkun, G., and Mello, C.C. 2001. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106: 23–34. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases