Differential strain patterns of the human gastrocnemius aponeurosis and free tendon, in vivo - PubMed (original) (raw)
Differential strain patterns of the human gastrocnemius aponeurosis and free tendon, in vivo
S P Magnusson et al. Acta Physiol Scand. 2003 Feb.
Abstract
Aim: The mechanical characteristics of the human free tendon and aponeurosis, in vivo, remains largely unknown. The present study evaluated the longitudinal displacement of the separate free Achilles tendon and distal (deep) aponeurosis of the medial gastrocnemius muscle during voluntary isometric contraction.
Methods: Ultrasonography-obtained displacement of the free tendon and tendon-aponeurosis complex, electromyography of the gastrocnemius, soleus, and dorsiflexor muscles, and joint angular rotation were recorded during isometric plantarflexion (n = 5). Tendon cross-sectional area, moment arm and segment lengths (L(o)) were measured using magnetic resonance imaging. Tendon force was calculated from joint moments and tendon moment arm, and stress was obtained by dividing force by cross-sectional area. The difference between the free tendon and tendon-aponeurosis complex deformation yielded separate distal aponeurosis deformation. Longitudinal aponeurosis and tendon strain were obtained from the deformations normalized to segment lengths.
Results: At a common tendon force of 2641 +/- 306 N, the respective deformation and Lo were 5.85 +/- 0.85 and 74 +/- 0.8 mm for the free tendon and 2.12 +/- 0.64 and 145 +/- 1.3 mm for the distal aponeurosis, P < 0.05. Longitudinal strain was 8.0 +/- 1.2% for the tendon and 1.4 +/- 0.4% for the aponeurosis, P < 0.01. Stiffness and stored energy was 759 +/- 132 N mm(-1) and 6.14 +/- 1.89 J, respectively, for the free tendon. Cross-sectional area of the Achilles tendon was 73 +/- 4 mm2, yielding a stress of 36.5 +/- 4.6 MPa and Young's modulus of 788 +/- 181 MPa.
Conclusion: The free Achilles tendon demonstrates greater strain compared with that of the distal (deep) aponeurosis during voluntary isometric contraction, which suggests that separate functional roles may exist during in vivo force transmission.
Similar articles
- Load-displacement properties of the human triceps surae aponeurosis in vivo.
Magnusson SP, Aagaard P, Dyhre-Poulsen P, Kjaer M. Magnusson SP, et al. J Physiol. 2001 Feb 15;531(Pt 1):277-88. doi: 10.1111/j.1469-7793.2001.0277j.x. J Physiol. 2001. PMID: 11179410 Free PMC article. Clinical Trial. - Load-displacement properties of the human triceps surae aponeurosis and tendon in runners and non-runners.
Rosager S, Aagaard P, Dyhre-Poulsen P, Neergaard K, Kjaer M, Magnusson SP. Rosager S, et al. Scand J Med Sci Sports. 2002 Apr;12(2):90-8. doi: 10.1034/j.1600-0838.2002.120205.x. Scand J Med Sci Sports. 2002. PMID: 12121426 - Effect of habitual running on human Achilles tendon load-deformation properties and cross-sectional area.
Hansen P, Aagaard P, Kjaer M, Larsson B, Magnusson SP. Hansen P, et al. J Appl Physiol (1985). 2003 Dec;95(6):2375-80. doi: 10.1152/japplphysiol.00503.2003. Epub 2003 Aug 22. J Appl Physiol (1985). 2003. PMID: 12937029 Clinical Trial. - Imaging-based estimates of moment arm length in intact human muscle-tendons.
Maganaris CN. Maganaris CN. Eur J Appl Physiol. 2004 Mar;91(2-3):130-9. doi: 10.1007/s00421-003-1033-x. Epub 2003 Dec 18. Eur J Appl Physiol. 2004. PMID: 14685871 Review. - Heterogeneous Loading of the Human Achilles Tendon In Vivo.
Bojsen-Møller J, Magnusson SP. Bojsen-Møller J, et al. Exerc Sport Sci Rev. 2015 Oct;43(4):190-7. doi: 10.1249/JES.0000000000000062. Exerc Sport Sci Rev. 2015. PMID: 26196866 Review.
Cited by
- A dynamic foot model for predictive simulations of human gait reveals causal relations between foot structure and whole-body mechanics.
D'Hondt L, De Groote F, Afschrift M. D'Hondt L, et al. PLoS Comput Biol. 2024 Jun 20;20(6):e1012219. doi: 10.1371/journal.pcbi.1012219. eCollection 2024 Jun. PLoS Comput Biol. 2024. PMID: 38900787 Free PMC article. - Engineering interfacial tissues: The myotendinous junction.
Snow F, O'Connell C, Yang P, Kita M, Pirogova E, Williams RJ, Kapsa RMI, Quigley A. Snow F, et al. APL Bioeng. 2024 Jun 3;8(2):021505. doi: 10.1063/5.0189221. eCollection 2024 Jun. APL Bioeng. 2024. PMID: 38841690 Free PMC article. Review. - Structure and function of Achilles and patellar tendons following moderate slow resistance training in young and old men.
Létocart AJ, Svensson RB, Mabesoone F, Charleux F, Marin F, Dermigny Q, Magnusson SP, Couppé C, Grosset JF. Létocart AJ, et al. Eur J Appl Physiol. 2024 Sep;124(9):2707-2723. doi: 10.1007/s00421-024-05461-y. Epub 2024 Apr 22. Eur J Appl Physiol. 2024. PMID: 38649478 - Full-Field Strain Measurements of the Muscle-Tendon Junction Using X-ray Computed Tomography and Digital Volume Correlation.
Iwasaki N, Karali A, Roldo M, Blunn G. Iwasaki N, et al. Bioengineering (Basel). 2024 Feb 6;11(2):162. doi: 10.3390/bioengineering11020162. Bioengineering (Basel). 2024. PMID: 38391648 Free PMC article. - A Longitudinal Study of the Physical Characteristics, Muscle-Tendon Structure Properties, and Skeletal Age in Preadolescent Boys.
Kubo K, Teshima T, Hirose N, Tsunoda N. Kubo K, et al. J Musculoskelet Neuronal Interact. 2023 Dec 1;23(4):407-416. J Musculoskelet Neuronal Interact. 2023. PMID: 38037359 Free PMC article.
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources