Vasoactivity of S-nitrosohemoglobin: role of oxygen, heme, and NO oxidation states - PubMed (original) (raw)
. 2003 Jun 1;101(11):4408-15.
doi: 10.1182/blood-2002-12-3825. Epub 2003 Jan 30.
Affiliations
- PMID: 12560216
- DOI: 10.1182/blood-2002-12-3825
Free article
Vasoactivity of S-nitrosohemoglobin: role of oxygen, heme, and NO oxidation states
Jack H Crawford et al. Blood. 2003.
Free article
Abstract
The mechanisms by which S-nitrosohemoglobin (SNOHb) stimulates vasodilation are unclear and underlie the controversies surrounding the proposal that this S-nitrosothiol modulates blood flow in vivo. Among the mechanistic complexities are the nature of vasoactive species released from SNOHb and the role heme and oxygen play in this process. This is important to address since hemoglobin inhibits NO-dependent vasodilation. We compared the vasodilatory properties of distinct oxidation and ligation states of SNOHb at different oxygen tensions. The results show that SNOHb in the oxygenated state (SNOoxyHb) is significantly less efficient than SNOHb in the ferric or met oxidation state (SNOmetHb) at stimulating relaxation of isolated rat aortic rings. Using pharmacologic approaches to modulate nitrogen monoxide radical (.NO)-dependent relaxation, our data suggest that SNOoxyHb promotes vasodilation in a.NO-independent manner. In contrast, both SNOmetHb and S-nitrosoglutathione (GSNO), a putative intermediate in SNOHb reactivity, elicit vasodilation in a.NO-dependent process. Consistent with previous observations, an increase in sensitivity of SNOHb vasodilation at low oxygen tensions also was observed. However, this was not exclusive for this protein but applied to a range of nitrosovasodilators (including a.NO donor [DeaNonoate], an S-nitrosothiol [GSNO], and the nitroxyl anion donor, Angelis salt). This suggests that oxygen-dependent modulation of SNOHb vasoactivity does not occur by controlling the allosteric state of Hb but is a property of vessel responsiveness to nitrosovasodilators at low oxygen tensions.
Comment in
- S-nitrosohemoglobin is distinguished from other nitrosovasodilators by unique oxygen-dependent responses that support an allosteric mechanism of action.
McMahon TJ, Pawloski JR, Hess DT, Piantadosi CA, Luchsinger BP, Singel DJ, Stamler JS. McMahon TJ, et al. Blood. 2003 Jul 1;102(1):410-1; author reply 412-3. doi: 10.1182/blood-2003-04-1058. Blood. 2003. PMID: 12814919 No abstract available.
Similar articles
- S-nitrosohemoglobin: a mechanism for its formation in conjunction with nitrite reduction by deoxyhemoglobin.
Nagababu E, Ramasamy S, Rifkind JM. Nagababu E, et al. Nitric Oxide. 2006 Aug;15(1):20-9. doi: 10.1016/j.niox.2006.01.012. Epub 2006 Mar 20. Nitric Oxide. 2006. PMID: 16545588 - Red blood cell nitric oxide as an endocrine vasoregulator: a potential role in congestive heart failure.
Datta B, Tufnell-Barrett T, Bleasdale RA, Jones CJ, Beeton I, Paul V, Frenneaux M, James P. Datta B, et al. Circulation. 2004 Mar 23;109(11):1339-42. doi: 10.1161/01.CIR.0000124450.07016.1D. Epub 2004 Mar 15. Circulation. 2004. PMID: 15023874 - Reaction of S-nitrosoglutathione with the heme group of deoxyhemoglobin.
Spencer NY, Zeng H, Patel RP, Hogg N. Spencer NY, et al. J Biol Chem. 2000 Nov 24;275(47):36562-7. doi: 10.1074/jbc.M005347200. J Biol Chem. 2000. PMID: 10945989 - Red Blood Cell-Mediated S-Nitrosohemoglobin-Dependent Vasodilation: Lessons Learned from a β-Globin Cys93 Knock-In Mouse.
Premont RT, Reynolds JD, Zhang R, Stamler JS. Premont RT, et al. Antioxid Redox Signal. 2021 Apr 20;34(12):936-961. doi: 10.1089/ars.2020.8153. Epub 2020 Jul 23. Antioxid Redox Signal. 2021. PMID: 32597195 Free PMC article. Review. - Role of Nitric Oxide Carried by Hemoglobin in Cardiovascular Physiology: Developments on a Three-Gas Respiratory Cycle.
Premont RT, Reynolds JD, Zhang R, Stamler JS. Premont RT, et al. Circ Res. 2020 Jan 3;126(1):129-158. doi: 10.1161/CIRCRESAHA.119.315626. Epub 2019 Oct 8. Circ Res. 2020. PMID: 31590598 Free PMC article. Review.
Cited by
- Acyloxy nitroso compounds as nitroxyl (HNO) donors: kinetics, reactions with thiols, and vasodilation properties.
Shoman ME, DuMond JF, Isbell TS, Crawford JH, Brandon A, Honovar J, Vitturi DA, White CR, Patel RP, King SB. Shoman ME, et al. J Med Chem. 2011 Feb 24;54(4):1059-70. doi: 10.1021/jm101432z. Epub 2011 Jan 19. J Med Chem. 2011. PMID: 21247168 Free PMC article. - Hypoxia, red blood cells, and nitrite regulate NO-dependent hypoxic vasodilation.
Crawford JH, Isbell TS, Huang Z, Shiva S, Chacko BK, Schechter AN, Darley-Usmar VM, Kerby JD, Lang JD Jr, Kraus D, Ho C, Gladwin MT, Patel RP. Crawford JH, et al. Blood. 2006 Jan 15;107(2):566-74. doi: 10.1182/blood-2005-07-2668. Epub 2005 Sep 29. Blood. 2006. PMID: 16195332 Free PMC article. - Effect of processing and storage on red blood cell function in vivo.
Doctor A, Spinella P. Doctor A, et al. Semin Perinatol. 2012 Aug;36(4):248-59. doi: 10.1053/j.semperi.2012.04.005. Semin Perinatol. 2012. PMID: 22818545 Free PMC article. Review. - Differentiated control of deranged nitric oxide metabolism: a therapeutic option in sepsis?
Lupp C, Baasner S, Ince C, Nocken F, Stover JF, Westphal M. Lupp C, et al. Crit Care. 2013 May 29;17(3):311. doi: 10.1186/cc12538. Crit Care. 2013. PMID: 23751085 Free PMC article. Review. - Erythrocytes do not activate purified and platelet soluble guanylate cyclases even in conditions favourable for NO synthesis.
Gambaryan S, Subramanian H, Kehrer L, Mindukshev I, Sudnitsyna J, Reiss C, Rukoyatkina N, Friebe A, Sharina I, Martin E, Walter U. Gambaryan S, et al. Cell Commun Signal. 2016 Aug 11;14(1):16. doi: 10.1186/s12964-016-0139-9. Cell Commun Signal. 2016. PMID: 27515066 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
- T32GM08361/GM/NIGMS NIH HHS/United States
- R01 HL067930/HL/NHLBI NIH HHS/United States
- R01 HL070146/HL/NHLBI NIH HHS/United States
- R01HL70146/HL/NHLBI NIH HHS/United States
- R01HL67930/HL/NHLBI NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous