Mechanism of endothelial cell NADPH oxidase activation by angiotensin II. Role of the p47phox subunit - PubMed (original) (raw)
. 2003 Apr 4;278(14):12094-100.
doi: 10.1074/jbc.M209793200. Epub 2003 Jan 30.
Affiliations
- PMID: 12560337
- DOI: 10.1074/jbc.M209793200
Free article
Mechanism of endothelial cell NADPH oxidase activation by angiotensin II. Role of the p47phox subunit
Jian-Mei Li et al. J Biol Chem. 2003.
Free article
Abstract
Endothelial cells express a constitutively active phagocyte-type NADPH oxidase whose activity is augmented by agonists such as angiotensin II. We recently reported (Li, J.-M., and Shah, A. M. (2002) J. Biol. Chem. 277, 19952-19960) that in contrast to neutrophils a substantial proportion of the NADPH oxidase in unstimulated endothelial cells exists as preassembled intracellular complexes. Here, we investigate the mechanism of angiotensin II-induced endothelial NADPH oxidase activation. Angiotensin II (100 nmol/liter)-induced reactive oxygen species production (as measured by dichlorohydrofluorescein fluorescence or lucigenin chemiluminescence) was completely absent in coronary microvascular endothelial cells isolated from p47(phox) knockout mice. Transfection of p47(phox) cDNA into p47(phox-/-) cells restored the angiotensin II response, whereas transfection of antisense p47(phox) cDNA into wild-type cells depleted p47(phox) and inhibited the angiotensin II response. In unstimulated human microvascular endothelial cells, there was significant p47(phox)-p22(phox) complex formation but minimal detectable p47(phox) phosphorylation. Angiotensin II induced rapid serine phosphorylation of p47(phox) (within 1 min, peaking at approximately 15 min), a 1.9 +/- 0.1-fold increase in p47(phox)-p22(phox) complex formation and a 1.6 +/- 0.2-fold increase in NADPH-dependent O(2)-* production (p < 0.05). p47(phox) was redistributed to "nuclear" and membrane-enriched cell fractions. These data indicate that angiotensin II-stimulated endothelial NADPH oxidase activity is regulated through serine phosphorylation of p47(phox) and its enhanced binding to p22(phox).
Similar articles
- Essential role of the NADPH oxidase subunit p47(phox) in endothelial cell superoxide production in response to phorbol ester and tumor necrosis factor-alpha.
Li JM, Mullen AM, Yun S, Wientjes F, Brouns GY, Thrasher AJ, Shah AM. Li JM, et al. Circ Res. 2002 Feb 8;90(2):143-50. doi: 10.1161/hh0202.103615. Circ Res. 2002. PMID: 11834706 - Activation of the phagocyte NADPH oxidase protein p47(phox). Phosphorylation controls SH3 domain-dependent binding to p22(phox).
Huang J, Kleinberg ME. Huang J, et al. J Biol Chem. 1999 Jul 9;274(28):19731-7. doi: 10.1074/jbc.274.28.19731. J Biol Chem. 1999. PMID: 10391914 - Intracellular localization and preassembly of the NADPH oxidase complex in cultured endothelial cells.
Li JM, Shah AM. Li JM, et al. J Biol Chem. 2002 May 31;277(22):19952-60. doi: 10.1074/jbc.M110073200. Epub 2002 Mar 13. J Biol Chem. 2002. PMID: 11893732 - NADPH oxidase activation in neutrophils: Role of the phosphorylation of its subunits.
Belambri SA, Rolas L, Raad H, Hurtado-Nedelec M, Dang PM, El-Benna J. Belambri SA, et al. Eur J Clin Invest. 2018 Nov;48 Suppl 2:e12951. doi: 10.1111/eci.12951. Epub 2018 Jun 3. Eur J Clin Invest. 2018. PMID: 29757466 Review. - Interactions between the components of the human NADPH oxidase: intrigues in the phox family.
Leusen JH, Verhoeven AJ, Roos D. Leusen JH, et al. J Lab Clin Med. 1996 Nov;128(5):461-76. doi: 10.1016/s0022-2143(96)90043-8. J Lab Clin Med. 1996. PMID: 8900289 Review.
Cited by
- Mitochondrial contributions to vascular endothelial dysfunction, arterial stiffness, and cardiovascular diseases.
Kirkman DL, Robinson AT, Rossman MJ, Seals DR, Edwards DG. Kirkman DL, et al. Am J Physiol Heart Circ Physiol. 2021 May 1;320(5):H2080-H2100. doi: 10.1152/ajpheart.00917.2020. Epub 2021 Apr 9. Am J Physiol Heart Circ Physiol. 2021. PMID: 33834868 Free PMC article. Review. - Dopaminergic degeneration is enhanced by chronic brain hypoperfusion and inhibited by angiotensin receptor blockage.
Rodriguez-Perez AI, Dominguez-Meijide A, Lanciego JL, Guerra MJ, Labandeira-Garcia JL. Rodriguez-Perez AI, et al. Age (Dordr). 2013 Oct;35(5):1675-90. doi: 10.1007/s11357-012-9470-2. Epub 2012 Sep 18. Age (Dordr). 2013. PMID: 22986582 Free PMC article. - Stimulation of the cardiac myocyte Na+-K+ pump due to reversal of its constitutive oxidative inhibition.
Chia KK, Liu CC, Hamilton EJ, Garcia A, Fry NA, Hannam W, Figtree GA, Rasmussen HH. Chia KK, et al. Am J Physiol Cell Physiol. 2015 Aug 15;309(4):C239-50. doi: 10.1152/ajpcell.00392.2014. Epub 2015 Jun 17. Am J Physiol Cell Physiol. 2015. PMID: 26084308 Free PMC article. - Reactive oxygen species in vascular biology: implications in hypertension.
Touyz RM, Schiffrin EL. Touyz RM, et al. Histochem Cell Biol. 2004 Oct;122(4):339-52. doi: 10.1007/s00418-004-0696-7. Epub 2004 Aug 26. Histochem Cell Biol. 2004. PMID: 15338229 Review. - Angiotensin II type 1 receptor blocker attenuates the activation of ERK and NADPH oxidase by mechanical strain in mesangial cells in the absence of angiotensin II.
Yatabe J, Sanada H, Yatabe MS, Hashimoto S, Yoneda M, Felder RA, Jose PA, Watanabe T. Yatabe J, et al. Am J Physiol Renal Physiol. 2009 May;296(5):F1052-60. doi: 10.1152/ajprenal.00580.2007. Epub 2009 Mar 4. Am J Physiol Renal Physiol. 2009. PMID: 19261744 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases