High rate of uptake of organic nitrogen compounds by Prochlorococcus cyanobacteria as a key to their dominance in oligotrophic oceanic waters - PubMed (original) (raw)
High rate of uptake of organic nitrogen compounds by Prochlorococcus cyanobacteria as a key to their dominance in oligotrophic oceanic waters
Mikhail V Zubkov et al. Appl Environ Microbiol. 2003 Feb.
Abstract
Direct evidence that marine cyanobacteria take up organic nitrogen compounds in situ at high rates is reported. About 33% of the total bacterioplankton turnover of amino acids, determined with a representative [(35)S]methionine precursor and flow sorting, can be assigned to Prochlorococcus spp. and 3% can be assigned to Synechococcus spp. in the oligotrophic and mesotrophic parts of the Arabian Sea, respectively. This finding may provide a mechanism for Prochlorococcus' competitive dominance over both strictly autotrophic algae and other bacteria in oligotrophic regions sustained by nutrient remineralization via a microbial loop.
Figures
FIG. 1.
[35S]methionine uptake by total bacterioplankton collected at different depths and by flow cytometrically sorted general bacterial cells (all bact) and Prochlorococcus (Pro). Prochlorococcus was sorted from the replicated fixed samples on two successive days (s.I and s.II). (a) Time series; (b) sorted cell number series. Dashed lines show linear regressions (Regr.), and corresponding regression coefficients (_r_2) are presented in the keys. DPM, disintegrations per minute.
FIG. 2.
Characteristic flow cytometric signatures of natural bacterioplankton in oligotrophic (a to c) and mesotrophic (d to f) regions of the Arabian Sea. Clearly revealed bacterioplankton cells stained for DNA were gated by the polygons (a and d) for radiolabel sorting to determine [35S]methionine uptake by an average bacterioplankton cell. The bacterial cells within the polygons were plotted separately to show Prochlorococcus (Pro) (b) and Synechococcus (Syn) (e) clusters with extra red fluorescence. The clusters of Prochlorococcus (c) and Synechococcus (f) sorted for radiolabel analyses were plotted separately.
FIG. 3.
Comparison of [35S]methionine uptake rates of flow-sorted Prochlorococcus and Synechococcus cells with uptake rates of average bacterioplankton cells (a) as well as vertical distributions of cyanobacterial methionine turnover (b) and its comparison with total bacterioplankton turnover (c). The uptake rates of average bacterioplankton cells were determined by flow sorting of the whole bacterioplankton community. Error bars indicate a single standard error of three measurements. Dashed line indicates a unity line. d, days. Data derived from Prochlorococcus sorted from the partially resolved clusters are shown by open circles and from the complete clusters by filled circles. DPM, disintegrations per minute.
Similar articles
- Depth related amino acid uptake by Prochlorococcus cyanobacteria in the Southern Atlantic tropical gyre.
Zubkov MV, Tarran GA, Fuchs BM. Zubkov MV, et al. FEMS Microbiol Ecol. 2004 Nov 1;50(3):153-61. doi: 10.1016/j.femsec.2004.06.009. FEMS Microbiol Ecol. 2004. PMID: 19712356 - Light enhanced amino acid uptake by dominant bacterioplankton groups in surface waters of the Atlantic Ocean.
Mary I, Tarran GA, Warwick PE, Terry MJ, Scanlan DJ, Burkill PH, Zubkov MV. Mary I, et al. FEMS Microbiol Ecol. 2008 Jan;63(1):36-45. doi: 10.1111/j.1574-6941.2007.00414.x. FEMS Microbiol Ecol. 2008. PMID: 18081589 - Comparable light stimulation of organic nutrient uptake by SAR11 and Prochlorococcus in the North Atlantic subtropical gyre.
Gómez-Pereira PR, Hartmann M, Grob C, Tarran GA, Martin AP, Fuchs BM, Scanlan DJ, Zubkov MV. Gómez-Pereira PR, et al. ISME J. 2013 Mar;7(3):603-14. doi: 10.1038/ismej.2012.126. Epub 2012 Oct 25. ISME J. 2013. PMID: 23096403 Free PMC article. - Mixotrophy in marine picocyanobacteria: use of organic compounds by Prochlorococcus and Synechococcus.
Muñoz-Marín MC, Gómez-Baena G, López-Lozano A, Moreno-Cabezuelo JA, Díez J, García-Fernández JM. Muñoz-Marín MC, et al. ISME J. 2020 May;14(5):1065-1073. doi: 10.1038/s41396-020-0603-9. Epub 2020 Feb 7. ISME J. 2020. PMID: 32034281 Free PMC article. Review. - Functional characterisation of substrate-binding proteins to address nutrient uptake in marine picocyanobacteria.
Ford BA, Sullivan GJ, Moore L, Varkey D, Zhu H, Ostrowski M, Mabbutt BC, Paulsen IT, Shah BS. Ford BA, et al. Biochem Soc Trans. 2021 Dec 17;49(6):2465-2481. doi: 10.1042/BST20200244. Biochem Soc Trans. 2021. PMID: 34882230 Free PMC article. Review.
Cited by
- Metagenomic Analysis Reveals Microbial Community Structure and Metabolic Potential for Nitrogen Acquisition in the Oligotrophic Surface Water of the Indian Ocean.
Wang Y, Liao S, Gai Y, Liu G, Jin T, Liu H, Gram L, Strube ML, Fan G, Sahu SK, Liu S, Gan S, Xie Z, Kong L, Zhang P, Liu X, Wang DZ. Wang Y, et al. Front Microbiol. 2021 Feb 18;12:518865. doi: 10.3389/fmicb.2021.518865. eCollection 2021. Front Microbiol. 2021. PMID: 33679623 Free PMC article. - Concentration-dependent patterns of leucine incorporation by coastal picoplankton.
Alonso C, Pernthaler J. Alonso C, et al. Appl Environ Microbiol. 2006 Mar;72(3):2141-7. doi: 10.1128/AEM.72.3.2141-2147.2006. Appl Environ Microbiol. 2006. PMID: 16517664 Free PMC article. - Sunlight modulates the relative importance of heterotrophic bacteria and picophytoplankton in DMSP-sulphur uptake.
Ruiz-González C, Simó R, Vila-Costa M, Sommaruga R, Gasol JM. Ruiz-González C, et al. ISME J. 2012 Mar;6(3):650-9. doi: 10.1038/ismej.2011.118. Epub 2011 Sep 29. ISME J. 2012. PMID: 21955992 Free PMC article. - Differential Timing for Glucose Assimilation in Prochlorococcus and Coexistent Microbial Populations in the North Pacific Subtropical Gyre.
Muñoz-Marín MDC, Duhamel S, Björkman KM, Magasin JD, Díez J, Karl DM, García-Fernández JM. Muñoz-Marín MDC, et al. Microbiol Spectr. 2022 Oct 26;10(5):e0246622. doi: 10.1128/spectrum.02466-22. Epub 2022 Sep 13. Microbiol Spectr. 2022. PMID: 36098532 Free PMC article. - Global genetic capacity for mixotrophy in marine picocyanobacteria.
Yelton AP, Acinas SG, Sunagawa S, Bork P, Pedrós-Alió C, Chisholm SW. Yelton AP, et al. ISME J. 2016 Dec;10(12):2946-2957. doi: 10.1038/ismej.2016.64. Epub 2016 May 3. ISME J. 2016. PMID: 27137127 Free PMC article.
References
- Andersson, A., C. Lee, F. Azam, and A. Hagstrom. 1985. Release of amino-acids and inorganic nutrients by heterotrophic marine microflagellates. Mar. Ecol. Prog. Ser. 23:99-106.
- Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil, and F. Thingstad. 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10:257-263.
- Beja, O., L. Aravind, E. V. Koonin, M. T. Suzuki, A. Hadd, L. P. Nguyen, S. Jovanovich, C. M. Gates, R. A. Feldman, J. L. Spudich, E. N. Spudich, and E. F. DeLong. 2000. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289:1902-1906. - PubMed
- Beja, O., M. T. Suzuki, J. F. Heidelberg, W. C. Nelson, C. M. Preston, T. Hamada, J. A. Eisen, C. M. Fraser, and E. F. DeLong. 2002. Unsuspected diversity among marine aerobic anoxygenic phototrophs. Nature 415:630-633. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous