RUNX1 and GATA-1 coexpression and cooperation in megakaryocytic differentiation - PubMed (original) (raw)
. 2003 Jun 1;101(11):4333-41.
doi: 10.1182/blood-2002-09-2708. Epub 2003 Feb 6.
Affiliations
- PMID: 12576332
- DOI: 10.1182/blood-2002-09-2708
Free article
RUNX1 and GATA-1 coexpression and cooperation in megakaryocytic differentiation
Kamaleldin E Elagib et al. Blood. 2003.
Free article
Abstract
Megakaryocytic and erythroid lineages derive from a common bipotential progenitor and share many transcription factors, most prominently factors of the GATA zinc-finger family. Little is known about transcription factors unique to the megakaryocytic lineage that might program divergence from the erythroid pathway. To identify such factors, we used the K562 system in which megakaryocyte lineage commitment is dependent on sustained extracellular regulatory kinase (ERK) activation and is inhibited by stromal cell contact. During megakaryocytic induction in this system, the myeloid transcription factor RUNX1 underwent up-regulation, dependent on ERK signaling and inhibitable by stromal cell contact. Immunostaining of healthy human bone marrow confirmed a strong expression of RUNX1 and its cofactor, core-binding factor beta (CBFbeta), in megakaryocytes and a minimal expression in erythroblasts. In primary human hematopoietic progenitor cultures, RUNX1 and CBFbeta up-regulation preceded megakaryocytic differentiation, and down-regulation of these factors preceded erythroid differentiation. Functional studies showed cooperation among RUNX1, CBFbeta, and GATA-1 in the activation of a megakaryocytic promoter. By contrast, the RUNX1-ETO leukemic fusion protein potently repressed GATA-1-mediated transactivation. These functional interactions correlated with physical interactions observed between GATA-1 and RUNX1 factors. Enforced RUNX1 expression in K562 cells enhanced the induction of the megakaryocytic integrin proteins alphaIIb and alpha2. These results suggest that RUNX1 may participate in the programming of megakaryocytic lineage commitment through functional and physical interactions with GATA transcription factors. By contrast, RUNX1-ETO inhibition of GATA function may constitute a potential mechanism for the blockade of erythroid and megakaryocytic differentiation seen in leukemias with t(8;21).
Similar articles
- The leukemia associated ETO nuclear repressor gene is regulated by the GATA-1 transcription factor in erythroid/megakaryocytic cells.
Ajore R, Dhanda RS, Gullberg U, Olsson I. Ajore R, et al. BMC Mol Biol. 2010 May 20;11:38. doi: 10.1186/1471-2199-11-38. BMC Mol Biol. 2010. PMID: 20487545 Free PMC article. - RUNX1 represses the erythroid gene expression program during megakaryocytic differentiation.
Kuvardina ON, Herglotz J, Kolodziej S, Kohrs N, Herkt S, Wojcik B, Oellerich T, Corso J, Behrens K, Kumar A, Hussong H, Urlaub H, Koch J, Serve H, Bonig H, Stocking C, Rieger MA, Lausen J. Kuvardina ON, et al. Blood. 2015 Jun 4;125(23):3570-9. doi: 10.1182/blood-2014-11-610519. Epub 2015 Apr 24. Blood. 2015. PMID: 25911237 Free PMC article. - Erythroid inhibition by the leukemic fusion AML1-ETO is associated with impaired acetylation of the major erythroid transcription factor GATA-1.
Choi Y, Elagib KE, Delehanty LL, Goldfarb AN. Choi Y, et al. Cancer Res. 2006 Mar 15;66(6):2990-6. doi: 10.1158/0008-5472.CAN-05-2944. Cancer Res. 2006. PMID: 16540647 - Regulation of RUNX1 transcriptional function by GATA-1.
Elagib KE, Goldfarb AN. Elagib KE, et al. Crit Rev Eukaryot Gene Expr. 2007;17(4):271-80. doi: 10.1615/critreveukargeneexpr.v17.i4.20. Crit Rev Eukaryot Gene Expr. 2007. PMID: 17725493 Review. - Megakaryocytic programming by a transcriptional regulatory loop: A circle connecting RUNX1, GATA-1, and P-TEFb.
Goldfarb AN. Goldfarb AN. J Cell Biochem. 2009 Jun 1;107(3):377-82. doi: 10.1002/jcb.22142. J Cell Biochem. 2009. PMID: 19350569 Free PMC article. Review.
Cited by
- CDK9 phosphorylates RUNX1 to promote megakaryocytic fate in megakaryocytic-erythroid progenitors.
Kwon N, Lu YC, Thompson EN, Mancuso RI, Wang L, Zhang PX, Krause DS. Kwon N, et al. Blood. 2024 Oct 24;144(17):1800-1812. doi: 10.1182/blood.2024023963. Blood. 2024. PMID: 39102635 - GATA1 in Normal and Pathologic Megakaryopoiesis and Platelet Development.
Takasaki K, Chou ST. Takasaki K, et al. Adv Exp Med Biol. 2024;1459:261-287. doi: 10.1007/978-3-031-62731-6_12. Adv Exp Med Biol. 2024. PMID: 39017848 Review. - Interface-guided phenotyping of coding variants in the transcription factor RUNX1.
Ozturk K, Panwala R, Sheen J, Ford K, Jayne N, Portell A, Zhang DE, Hutter S, Haferlach T, Ideker T, Mali P, Carter H. Ozturk K, et al. Cell Rep. 2024 Jul 23;43(7):114436. doi: 10.1016/j.celrep.2024.114436. Epub 2024 Jul 4. Cell Rep. 2024. PMID: 38968069 Free PMC article. - Pharmacological inhibition of RUNX1 reduces infarct size after acute myocardial infarction in rats and underlying mechanism revealed by proteomics implicates repressed cathepsin levels.
Chen H, Wang S, Zhang X, Hua X, Liu M, Wang Y, Wu S, He W. Chen H, et al. Funct Integr Genomics. 2024 Jun 12;24(3):113. doi: 10.1007/s10142-024-01391-2. Funct Integr Genomics. 2024. PMID: 38862712 Free PMC article. - Tumor cell-released kynurenine biases MEP differentiation into megakaryocytes in individuals with cancer by activating AhR-RUNX1.
Zhou L, Wu D, Zhou Y, Wang D, Fu H, Huang Q, Qin G, Chen J, Lv J, Lai S, Zhang H, Tang K, Ma J, Fiskesund R, Zhang Y, Zhang X, Huang B. Zhou L, et al. Nat Immunol. 2023 Dec;24(12):2042-2052. doi: 10.1038/s41590-023-01662-3. Epub 2023 Nov 2. Nat Immunol. 2023. PMID: 37919525 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous