Regulation of transbilayer plasma membrane phospholipid asymmetry - PubMed (original) (raw)
Review
doi: 10.1194/jlr.R200019-JLR200. Epub 2002 Dec 16.
Affiliations
- PMID: 12576505
- DOI: 10.1194/jlr.R200019-JLR200
Free article
Review
Regulation of transbilayer plasma membrane phospholipid asymmetry
David L Daleke. J Lipid Res. 2003 Feb.
Free article
Erratum in
- J Lipid Res. 2003 Dec;44(12):2429
Abstract
Lipids in biological membranes are asymmetrically distributed across the bilayer; the amine-containing phospholipids are enriched on the cytoplasmic surface of the plasma membrane, while the choline-containing and sphingolipids are enriched on the outer surface. The maintenance of transbilayer lipid asymmetry is essential for normal membrane function, and disruption of this asymmetry is associated with cell activation or pathologic conditions. Lipid asymmetry is generated primarily by selective synthesis of lipids on one side of the membrane. Because passive lipid transbilayer diffusion is slow, a number of proteins have evolved to either dissipate or maintain this lipid gradient. These proteins fall into three classes: 1) cytofacially-directed, ATP-dependent transporters ("flippases"); 2) exofacially-directed, ATP-dependent transporters ("floppases"); and 3) bidirectional, ATP-independent transporters ("scramblases"). The flippase is highly selective for phosphatidylserine and functions to keep this lipid sequestered from the cell surface. Floppase activity has been associated with the ABC class of transmembrane transporters. Although they are primarily nonspecific, at least two members of this class display selectivity for their substrate lipid. Scramblases are inherently nonspecific and function to randomize the distribution of newly synthesized lipids in the endoplasmic reticulum or plasma membrane lipids in activated cells. It is the combined action of these proteins and the physical properties of the membrane bilayer that generate and maintain transbilayer lipid asymmetry.
Similar articles
- Identification and purification of aminophospholipid flippases.
Daleke DL, Lyles JV. Daleke DL, et al. Biochim Biophys Acta. 2000 Jun 26;1486(1):108-27. doi: 10.1016/s1388-1981(00)00052-4. Biochim Biophys Acta. 2000. PMID: 10856717 Review. - The role of lipid scramblases in regulating lipid distributions at cellular membranes.
Wang Y, Kinoshita T. Wang Y, et al. Biochem Soc Trans. 2023 Oct 31;51(5):1857-1869. doi: 10.1042/BST20221455. Biochem Soc Trans. 2023. PMID: 37767549 Review. - Transbilayer (flip-flop) lipid motion and lipid scrambling in membranes.
Contreras FX, Sánchez-Magraner L, Alonso A, Goñi FM. Contreras FX, et al. FEBS Lett. 2010 May 3;584(9):1779-86. doi: 10.1016/j.febslet.2009.12.049. Epub 2009 Dec 30. FEBS Lett. 2010. PMID: 20043909 Review. - Lipid translocation across the plasma membrane of mammalian cells.
Bevers EM, Comfurius P, Dekkers DW, Zwaal RF. Bevers EM, et al. Biochim Biophys Acta. 1999 Aug 18;1439(3):317-30. doi: 10.1016/s1388-1981(99)00110-9. Biochim Biophys Acta. 1999. PMID: 10446420 Review. - Control of the transmembrane phospholipid distribution in eukaryotic cells by aminophospholipid translocase.
Devaux PF, Zachowski A, Morrot G, Cribier S, Fellmann P, Geldwerth D, Bitbol M, Herve P. Devaux PF, et al. Biotechnol Appl Biochem. 1990 Oct;12(5):517-22. Biotechnol Appl Biochem. 1990. PMID: 2288706 Review.
Cited by
- A comparison of the gas phase acidities of phospholipid headgroups: experimental and computational studies.
Thomas MC, Mitchell TW, Blanksby SJ. Thomas MC, et al. J Am Soc Mass Spectrom. 2005 Jun;16(6):926-39. doi: 10.1016/j.jasms.2005.02.019. Epub 2005 Apr 26. J Am Soc Mass Spectrom. 2005. PMID: 15907707 - Identification and quantification of aminophospholipid molecular species on the surface of apoptotic and activated cells.
Thomas CP, Clark SR, Hammond VJ, Aldrovandi M, Collins PW, O'Donnell VB. Thomas CP, et al. Nat Protoc. 2014 Jan;9(1):51-63. doi: 10.1038/nprot.2013.163. Epub 2013 Dec 12. Nat Protoc. 2014. PMID: 24336470 - ATP9B, a P4-ATPase (a putative aminophospholipid translocase), localizes to the trans-Golgi network in a CDC50 protein-independent manner.
Takatsu H, Baba K, Shima T, Umino H, Kato U, Umeda M, Nakayama K, Shin HW. Takatsu H, et al. J Biol Chem. 2011 Nov 4;286(44):38159-38167. doi: 10.1074/jbc.M111.281006. Epub 2011 Sep 13. J Biol Chem. 2011. PMID: 21914794 Free PMC article. - Formation and Nanoscale Characterization of Asymmetric Supported Lipid Bilayers Containing Raft-Like Domains.
Vázquez RF, Ovalle-García E, Antillón A, Ortega-Blake I, Muñoz-Garay C, Maté SM. Vázquez RF, et al. Methods Mol Biol. 2022;2402:243-256. doi: 10.1007/978-1-0716-1843-1_19. Methods Mol Biol. 2022. PMID: 34854049 - Membrane microdomains: from seeing to understanding.
Truong-Quang BA, Lenne PF. Truong-Quang BA, et al. Front Plant Sci. 2014 Feb 18;5:18. doi: 10.3389/fpls.2014.00018. eCollection 2014. Front Plant Sci. 2014. PMID: 24600455 Free PMC article. Review.