The human L(3)MBT polycomb group protein is a transcriptional repressor and interacts physically and functionally with TEL (ETV6) - PubMed (original) (raw)
. 2003 Apr 25;278(17):15412-20.
doi: 10.1074/jbc.M300592200. Epub 2003 Feb 14.
Affiliations
- PMID: 12588862
- DOI: 10.1074/jbc.M300592200
Free article
The human L(3)MBT polycomb group protein is a transcriptional repressor and interacts physically and functionally with TEL (ETV6)
Piernicola Boccuni et al. J Biol Chem. 2003.
Free article
Abstract
H-L(3)MBT, the human homolog of the Drosophila lethal(3)malignant brain tumor protein, is a member of the polycomb group (PcG) of proteins, which function as transcriptional regulators in large protein complexes. Homozygous mutations in the l(3)mbt gene cause brain tumors in Drosophila, identifying l(3)mbt as a tumor suppressor gene. The h-l(3)mbt gene maps to chromosome 20q12, within a common deleted region associated with myeloid hematopoietic malignancies. H-L(3)MBT contains three repeats of 100 residues called MBT repeats, whose function is unknown, and a C-terminal alpha-helical structure, the SPM (SCM, PH, MBT domain, which is structurally similar to the SAM (sterile alpha motif) protein-protein interaction domain, found in several ETS transcription factors, including TEL (translocation Ets leukemia). We report that H-L(3)MBT is a transcriptional repressor and that its activity is largely dependent on the presence of a region containing the three MBT repeats. H-L(3)MBT acts as a histone deacetylase-independent transcriptional repressor, based on its lack of sensitivity to trichostatin A. We found that H-L(3)MBT binds in vivo to TEL, and we have mapped the region of interaction to their respective SPM/SAM domains. We show that the ability of TEL to repress TEL-responsive promoters is enhanced by the presence of H-L(3)MBT, an effect dependent on the H-L(3)MBT and the TEL interacting domains. These experiments suggest that histone deacetylase-independent transcriptional repression by TEL depends on the recruitment of PcG proteins. We speculate that the interaction of TEL with H-L(3)MBT can direct a PcG complex to genes repressed by TEL, stabilizing their repressed state.
Similar articles
- TEL contacts multiple co-repressors and specifically associates with histone deacetylase-3.
Wang L, Hiebert SW. Wang L, et al. Oncogene. 2001 Jun 21;20(28):3716-25. doi: 10.1038/sj.onc.1204479. Oncogene. 2001. PMID: 11439334 - Proteins of the ETS family with transcriptional repressor activity.
Mavrothalassitis G, Ghysdael J. Mavrothalassitis G, et al. Oncogene. 2000 Dec 18;19(55):6524-32. doi: 10.1038/sj.onc.1204045. Oncogene. 2000. PMID: 11175368 Review. - TEL is a sequence-specific transcriptional repressor.
Lopez RG, Carron C, Oury C, Gardellin P, Bernard O, Ghysdael J. Lopez RG, et al. J Biol Chem. 1999 Oct 15;274(42):30132-8. doi: 10.1074/jbc.274.42.30132. J Biol Chem. 1999. PMID: 10514502 - Chromatin regulation: how complex does it get?
Meier K, Brehm A. Meier K, et al. Epigenetics. 2014 Nov;9(11):1485-95. doi: 10.4161/15592294.2014.971580. Epigenetics. 2014. PMID: 25482055 Free PMC article. Review. - Mechanism of transcriptional repression by TEL/RUNX1 fusion protein.
Lee YJ, Kim JH, Bae S, Rho SK, Choe SY. Lee YJ, et al. Mol Cells. 2004 Apr 30;17(2):217-22. Mol Cells. 2004. PMID: 15179033
Cited by
- The Diverse Roles of ETV6 Alterations in B-Lymphoblastic Leukemia and Other Hematopoietic Cancers.
Monovich AC, Gurumurthy A, Ryan RJH. Monovich AC, et al. Adv Exp Med Biol. 2024;1459:291-320. doi: 10.1007/978-3-031-62731-6_13. Adv Exp Med Biol. 2024. PMID: 39017849 Review. - Lysine Methylation-Dependent Proteolysis by the Malignant Brain Tumor (MBT) Domain Proteins.
Sun H, Zhang H. Sun H, et al. Int J Mol Sci. 2024 Feb 13;25(4):2248. doi: 10.3390/ijms25042248. Int J Mol Sci. 2024. PMID: 38396925 Free PMC article. Review. - The impact of physical activity on promoter-specific methylation of genes involved in the redox-status and disease progression: A longitudinal study on post-surgery female breast cancer patients undergoing medical treatment.
Moulton C, Murri A, Benotti G, Fantini C, Duranti G, Ceci R, Grazioli E, Cerulli C, Sgrò P, Rossi C, Magno S, Di Luigi L, Caporossi D, Parisi A, Dimauro I. Moulton C, et al. Redox Biol. 2024 Apr;70:103033. doi: 10.1016/j.redox.2024.103033. Epub 2024 Jan 5. Redox Biol. 2024. PMID: 38211440 Free PMC article. - MBTD1 preserves adult hematopoietic stem cell pool size and function.
Takubo K, Htun PW, Ueda T, Sera Y, Iwasaki M, Koizumi M, Shiroshita K, Kobayashi H, Haraguchi M, Watanuki S, Honda ZI, Yamasaki N, Nakamura-Ishizu A, Arai F, Motoyama N, Hatta T, Natsume T, Suda T, Honda H. Takubo K, et al. Proc Natl Acad Sci U S A. 2023 Aug 8;120(32):e2206860120. doi: 10.1073/pnas.2206860120. Epub 2023 Jul 31. Proc Natl Acad Sci U S A. 2023. PMID: 37523546 Free PMC article. - Sticky, Adaptable, and Many-sided: SAM protein versatility in normal and pathological hematopoietic states.
Ray S, Hewitt K. Ray S, et al. Bioessays. 2023 Aug;45(8):e2300022. doi: 10.1002/bies.202300022. Epub 2023 Jun 15. Bioessays. 2023. PMID: 37318311 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases