Role for AMP-activated protein kinase in glucose-stimulated insulin secretion and preproinsulin gene expression - PubMed (original) (raw)
Role for AMP-activated protein kinase in glucose-stimulated insulin secretion and preproinsulin gene expression
Gabriela da Silva Xavier et al. Biochem J. 2003.
Abstract
AMP-activated protein kinase (AMPK) has recently been implicated in the control of preproinsulin gene expression in pancreatic islet beta-cells [da Silva Xavier, Leclerc, Salt, Doiron, Hardie, Kahn and Rutter (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 4023-4028]. Using pharmacological and molecular strategies to regulate AMPK activity in rat islets and clonal MIN6 beta-cells, we show here that the effects of AMPK are exerted largely upstream of insulin release. Thus forced increases in AMPK activity achieved pharmacologically with 5-amino-4-imidazolecarboxamide riboside (AICAR), or by adenoviral overexpression of a truncated, constitutively active form of the enzyme (AMPK alpha 1.T(172)D), blocked glucose-stimulated insulin secretion. In MIN6 cells, activation of AMPK suppressed glucose metabolism, as assessed by changes in total, cytosolic or mitochondrial [ATP] and NAD(P)H, and reduced increases in intracellular [Ca(2+)] caused by either glucose or tolbutamide. By contrast, inactivation of AMPK by expression of a dominant-negative form of the enzyme mutated in the catalytic site (AMPK alpha 1.D(157)A) did not affect glucose-stimulated increases in [ATP], NAD(P)H or intracellular [Ca(2+)], but led to the unregulated release of insulin. These results indicate that inhibition of AMPK by glucose is essential for the activation of insulin secretion by the sugar, and may contribute to the transcriptional stimulation of the preproinsulin gene. Modulation of AMPK activity in the beta-cell may thus represent a novel therapeutic strategy for the treatment of type 2 diabetes mellitus.
Similar articles
- Regulation of gene expression by glucose in pancreatic beta -cells (MIN6) via insulin secretion and activation of phosphatidylinositol 3'-kinase.
da Silva Xavier G, Varadi A, Ainscow EK, Rutter GA. da Silva Xavier G, et al. J Biol Chem. 2000 Nov 17;275(46):36269-77. doi: 10.1074/jbc.M006597200. J Biol Chem. 2000. PMID: 10967119 - Metformin, but not leptin, regulates AMP-activated protein kinase in pancreatic islets: impact on glucose-stimulated insulin secretion.
Leclerc I, Woltersdorf WW, da Silva Xavier G, Rowe RL, Cross SE, Korbutt GS, Rajotte RV, Smith R, Rutter GA. Leclerc I, et al. Am J Physiol Endocrinol Metab. 2004 Jun;286(6):E1023-31. doi: 10.1152/ajpendo.00532.2003. Epub 2004 Feb 10. Am J Physiol Endocrinol Metab. 2004. PMID: 14871885 - 5'-AMP-activated protein kinase controls insulin-containing secretory vesicle dynamics.
Tsuboi T, da Silva Xavier G, Leclerc I, Rutter GA. Tsuboi T, et al. J Biol Chem. 2003 Dec 26;278(52):52042-51. doi: 10.1074/jbc.M307800200. Epub 2003 Oct 7. J Biol Chem. 2003. PMID: 14532293 - The relevance of AMP-activated protein kinase in insulin-secreting β cells: a potential target for improving β cell function?
Szkudelski T, Szkudelska K. Szkudelski T, et al. J Physiol Biochem. 2019 Nov;75(4):423-432. doi: 10.1007/s13105-019-00706-3. Epub 2019 Nov 5. J Physiol Biochem. 2019. PMID: 31691163 Free PMC article. Review. - AMPK pathway: an emerging target to control diabetes mellitus and its related complications.
Kakoti BB, Alom S, Deka K, Halder RK. Kakoti BB, et al. J Diabetes Metab Disord. 2024 Apr 18;23(1):441-459. doi: 10.1007/s40200-024-01420-8. eCollection 2024 Jun. J Diabetes Metab Disord. 2024. PMID: 38932895 Review.
Cited by
- Activation of AMPK Stimulates Neurotensin Secretion in Neuroendocrine Cells.
Li J, Song J, Weiss HL, Weiss T, Townsend CM Jr, Evers BM. Li J, et al. Mol Endocrinol. 2016 Jan;30(1):26-36. doi: 10.1210/me.2015-1094. Epub 2015 Nov 3. Mol Endocrinol. 2016. PMID: 26528831 Free PMC article. - AMP-activated protein kinase signaling in metabolic regulation.
Long YC, Zierath JR. Long YC, et al. J Clin Invest. 2006 Jul;116(7):1776-83. doi: 10.1172/JCI29044. J Clin Invest. 2006. PMID: 16823475 Free PMC article. Review. - Glucose-sensing mechanisms in pancreatic beta-cells.
MacDonald PE, Joseph JW, Rorsman P. MacDonald PE, et al. Philos Trans R Soc Lond B Biol Sci. 2005 Dec 29;360(1464):2211-25. doi: 10.1098/rstb.2005.1762. Philos Trans R Soc Lond B Biol Sci. 2005. PMID: 16321791 Free PMC article. Review. - Glucose-induced binding of the polypyrimidine tract-binding protein (PTB) to the 3'-untranslated region of the insulin mRNA (ins-PRS) is inhibited by rapamycin.
Tillmar L, Welsh N. Tillmar L, et al. Mol Cell Biochem. 2004 May;260(1-2):85-90. doi: 10.1023/b:mcbi.0000026059.56089.e4. Mol Cell Biochem. 2004. PMID: 15228089 - Microenvironmental stimuli for proliferation of functional islet β-cells.
Alismail H, Jin S. Alismail H, et al. Cell Biosci. 2014 Mar 4;4(1):12. doi: 10.1186/2045-3701-4-12. Cell Biosci. 2014. PMID: 24594290 Free PMC article.
References
- Diabetes. 2002 Jan;51(1):159-67 - PubMed
- J Biol Chem. 1992 Sep 5;267(25):18110-7 - PubMed
- Biochem J. 2000 Feb 1;345 Pt 3:437-43 - PubMed
- J Biol Chem. 1996 Apr 12;271(15):8675-81 - PubMed
- J Biol Chem. 1975 Apr 10;250(7):2502-9 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous