Clustering of time-course gene expression data using a mixed-effects model with B-splines - PubMed (original) (raw)
Clustering of time-course gene expression data using a mixed-effects model with B-splines
Yihui Luan et al. Bioinformatics. 2003.
Abstract
Motivation: Time-course gene expression data are often measured to study dynamic biological systems and gene regulatory networks. To account for time dependency of the gene expression measurements over time and the noisy nature of the microarray data, the mixed-effects model using B-splines was introduced. This paper further explores such mixed-effects model in analyzing the time-course gene expression data and in performing clustering of genes in a mixture model framework.
Results: After fitting the mixture model in the framework of the mixed-effects model using an EM algorithm, we obtained the smooth mean gene expression curve for each cluster. For each gene, we obtained the best linear unbiased smooth estimate of its gene expression trajectory over time, combining data from that gene and other genes in the same cluster. Simulated data indicate that the methods can effectively cluster noisy curves into clusters differing in either the shapes of the curves or the times to the peaks of the curves. We further demonstrate the proposed method by clustering the yeast genes based on their cell cycle gene expression data and the human genes based on the temporal transcriptional response of fibroblasts to serum. Clear periodic patterns and varying times to peaks are observed for different clusters of the cell-cycle regulated genes. Results of the analysis of the human fibroblasts data show seven distinct transcriptional response profiles with biological relevance.
Availability: Matlab programs are available on request from the authors.
Similar articles
- Comparisons and validation of statistical clustering techniques for microarray gene expression data.
Datta S, Datta S. Datta S, et al. Bioinformatics. 2003 Mar 1;19(4):459-66. doi: 10.1093/bioinformatics/btg025. Bioinformatics. 2003. PMID: 12611800 - An information theoretic approach for analyzing temporal patterns of gene expression.
Kasturi J, Acharya R, Ramanathan M. Kasturi J, et al. Bioinformatics. 2003 Mar 1;19(4):449-58. doi: 10.1093/bioinformatics/btg020. Bioinformatics. 2003. PMID: 12611799 - A multivariate approach applied to microarray data for identification of genes with cell cycle-coupled transcription.
Johansson D, Lindgren P, Berglund A. Johansson D, et al. Bioinformatics. 2003 Mar 1;19(4):467-73. doi: 10.1093/bioinformatics/btg017. Bioinformatics. 2003. PMID: 12611801 - Identifying periodically expressed transcripts in microarray time series data.
Wichert S, Fokianos K, Strimmer K. Wichert S, et al. Bioinformatics. 2004 Jan 1;20(1):5-20. doi: 10.1093/bioinformatics/btg364. Bioinformatics. 2004. PMID: 14693803 - Analyzing time series gene expression data.
Bar-Joseph Z. Bar-Joseph Z. Bioinformatics. 2004 Nov 1;20(16):2493-503. doi: 10.1093/bioinformatics/bth283. Epub 2004 May 6. Bioinformatics. 2004. PMID: 15130923 Review.
Cited by
- A recursive framework for predicting the time-course of drug sensitivity.
Qian C, Emad A, Sidiropoulos ND. Qian C, et al. Sci Rep. 2020 Oct 19;10(1):17682. doi: 10.1038/s41598-020-74725-2. Sci Rep. 2020. PMID: 33077880 Free PMC article. - Robust clustering of COVID-19 cases across U.S. counties using mixtures of asymmetric time series models with time varying and freely indexed covariates.
Maleki M, Bidram H, Wraith D. Maleki M, et al. J Appl Stat. 2022 Jan 1;50(11-12):2648-2662. doi: 10.1080/02664763.2021.2019688. eCollection 2023. J Appl Stat. 2022. PMID: 37529575 Free PMC article. - Principal component tests: applied to temporal gene expression data.
Zhang W, Fang HB, Song J. Zhang W, et al. BMC Bioinformatics. 2009 Jan 30;10 Suppl 1(Suppl 1):S26. doi: 10.1186/1471-2105-10-S1-S26. BMC Bioinformatics. 2009. PMID: 19208126 Free PMC article. - Modelling human immunodeficiency virus ribonucleic acid levels with finite mixtures for censored longitudinal data.
Grün B, Hornik K. Grün B, et al. J R Stat Soc Ser C Appl Stat. 2012 Mar;61(2):201-218. doi: 10.1111/j.1467-9876.2011.01007.x. J R Stat Soc Ser C Appl Stat. 2012. PMID: 22736871 Free PMC article. - Time series expression analyses using RNA-seq: a statistical approach.
Oh S, Song S, Grabowski G, Zhao H, Noonan JP. Oh S, et al. Biomed Res Int. 2013;2013:203681. doi: 10.1155/2013/203681. Epub 2013 Mar 24. Biomed Res Int. 2013. PMID: 23586021 Free PMC article.
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources