The thanatophoric dysplasia type II mutation hampers complete maturation of fibroblast growth factor receptor 3 (FGFR3), which activates signal transducer and activator of transcription 1 (STAT1) from the endoplasmic reticulum - PubMed (original) (raw)
. 2003 May 9;278(19):17344-9.
doi: 10.1074/jbc.M212710200. Epub 2003 Mar 6.
Affiliations
- PMID: 12624096
- DOI: 10.1074/jbc.M212710200
Free article
The thanatophoric dysplasia type II mutation hampers complete maturation of fibroblast growth factor receptor 3 (FGFR3), which activates signal transducer and activator of transcription 1 (STAT1) from the endoplasmic reticulum
Patricia M-J Lievens et al. J Biol Chem. 2003.
Free article
Abstract
The K650E substitution in the fibroblast growth factor receptor 3 (FGFR3) causes constitutive tyrosine kinase activity of the receptor and is associated to the lethal skeletal disorder, thanatophoric dysplasia type II (TDII). The underlying mechanisms of how the activated FGFR3 causes TDII remains to be elucidated. FGFR3 is a transmembrane glycoprotein, which is synthesized through three isoforms, with various degrees of N-glycosylation. We have studied whether immature FGFR3 isoforms mediate the abnormal signaling in TDII. We show that synthesis of TDII-FGFR3 presents two phosphorylated forms: the immature non-glycosylated 98-kDa peptides and the intermediate 120-kDa glycomers. The mature, fully glycosylated 130-kDa forms, detected in wild type FGFR3, are not present in TDII. Endoglycosidase H cleaves the sugars on TDII intermediates thus indicating their intracellular localization in the endoplasmic reticulum. Accordingly, TDII-FGFR3-GFP co-localizes with calreticulin in the endoplasmic reticulum. Furthermore, following TDII transfection, signal transducer and activator of transcription 1 (STAT1) is phosphorylated in the absence of FGFR3 ligand and brefeldin A does not inhibit its activation. On the contrary, the cell membrane-anchored FRS2alpha protein is not activated in TDII cells. The opposite situation is observed in stable TDII cell clones where, despite the presence of phosphorylated mature receptor, STAT1 is not activated whereas FRS2alpha is phosphorylated. We speculate that the selection process favors cells defective in STAT1 activation through the 120-kDa TDII-FGFR3, thus allowing growth of the TDII cell clones. Accordingly, apoptosis is observed following TDII-FGFR3 transfection. These observations highlight the importance of the immature TDII-FGFR3 proteins as mediators of an abnormal signaling in TDII.
Similar articles
- Activation of Stat1 by mutant fibroblast growth-factor receptor in thanatophoric dysplasia type II dwarfism.
Su WC, Kitagawa M, Xue N, Xie B, Garofalo S, Cho J, Deng C, Horton WA, Fu XY. Su WC, et al. Nature. 1997 Mar 20;386(6622):288-92. doi: 10.1038/386288a0. Nature. 1997. PMID: 9069288 - Transformation and Stat activation by derivatives of FGFR1, FGFR3, and FGFR4.
Hart KC, Robertson SC, Kanemitsu MY, Meyer AN, Tynan JA, Donoghue DJ. Hart KC, et al. Oncogene. 2000 Jul 6;19(29):3309-20. doi: 10.1038/sj.onc.1203650. Oncogene. 2000. PMID: 10918587 - Mutant FGFR3 associated with SADDAN disease causes cytoskeleton disorganization through PLCγ1/Src-mediated paxillin hyperphosphorylation.
Montone R, Romanelli MG, Baruzzi A, Ferrarini F, Liboi E, Lievens PM. Montone R, et al. Int J Biochem Cell Biol. 2018 Feb;95:17-26. doi: 10.1016/j.biocel.2017.12.008. Epub 2017 Dec 11. Int J Biochem Cell Biol. 2018. PMID: 29242050 - [From gene to disease; achondroplasia and other skeletal dysplasias due to an activating mutation in the fibroblast growth factor].
van Ravenswaaij-Arts CM, Losekoot M. van Ravenswaaij-Arts CM, et al. Ned Tijdschr Geneeskd. 2001 Jun 2;145(22):1056-9. Ned Tijdschr Geneeskd. 2001. PMID: 11414167 Review. Dutch. - Fibroblast growth factor receptor 3 and the human chondrodysplasias.
Horton WA. Horton WA. Curr Opin Pediatr. 1997 Aug;9(4):437-42. doi: 10.1097/00008480-199708000-00021. Curr Opin Pediatr. 1997. PMID: 9300204 Review.
Cited by
- Comprehensive functional evaluation of variants of fibroblast growth factor receptor genes in cancer.
Nakamura IT, Kohsaka S, Ikegami M, Ikeuchi H, Ueno T, Li K, Beyett TS, Koyama T, Shimizu T, Yamamoto N, Takahashi F, Takahashi K, Eck MJ, Mano H. Nakamura IT, et al. NPJ Precis Oncol. 2021 Jul 16;5(1):66. doi: 10.1038/s41698-021-00204-0. NPJ Precis Oncol. 2021. PMID: 34272467 Free PMC article. - Comparative X-ray morphometry of prenatal osteogenesis imperfecta type 2 and thanatophoric dysplasia: a contribution to prenatal differential diagnosis.
Bondioni MP, Pazzaglia UE, Izzi C, Di Gaetano G, Laffranchi F, Baldi M, Prefumo F. Bondioni MP, et al. Radiol Med. 2017 Nov;122(11):880-891. doi: 10.1007/s11547-017-0784-0. Epub 2017 Jul 3. Radiol Med. 2017. PMID: 28674909 - Achondroplasia: Development, pathogenesis, and therapy.
Ornitz DM, Legeai-Mallet L. Ornitz DM, et al. Dev Dyn. 2017 Apr;246(4):291-309. doi: 10.1002/dvdy.24479. Epub 2017 Mar 2. Dev Dyn. 2017. PMID: 27987249 Free PMC article. Review. - ZDHHC3 Tyrosine Phosphorylation Regulates Neural Cell Adhesion Molecule Palmitoylation.
Lievens PM, Kuznetsova T, Kochlamazashvili G, Cesca F, Gorinski N, Galil DA, Cherkas V, Ronkina N, Lafera J, Gaestel M, Ponimaskin E, Dityatev A. Lievens PM, et al. Mol Cell Biol. 2016 Aug 12;36(17):2208-25. doi: 10.1128/MCB.00144-16. Print 2016 Sep 1. Mol Cell Biol. 2016. PMID: 27247265 Free PMC article. - ProNodal acts via FGFR3 to govern duration of Shh expression in the prechordal mesoderm.
Ellis PS, Burbridge S, Soubes S, Ohyama K, Ben-Haim N, Chen C, Dale K, Shen MM, Constam D, Placzek M. Ellis PS, et al. Development. 2015 Nov 15;142(22):3821-32. doi: 10.1242/dev.119628. Epub 2015 Sep 28. Development. 2015. PMID: 26417042 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Research Materials
Miscellaneous