Analysis of myosin heavy chain functionality in the heart - PubMed (original) (raw)
. 2003 May 9;278(19):17466-74.
doi: 10.1074/jbc.M210804200. Epub 2003 Mar 6.
Atsushi Sanbe, Florence Bouyer-Dalloz, James Gulick, Raisa Klevitsky, Timothy E Hewett, Hanna E Osinska, John N Lorenz, Christine Brosseau, Andrea Federico, Norman R Alpert, David M Warshaw, M Benjamin Perryman, Steve M Helmke, Jeffrey Robbins
Affiliations
- PMID: 12626511
- DOI: 10.1074/jbc.M210804200
Free article
Analysis of myosin heavy chain functionality in the heart
Maike Krenz et al. J Biol Chem. 2003.
Free article
Abstract
Comparison of mammalian cardiac alpha- and beta-myosin heavy chain isoforms reveals 93% identity. To date, genetic methodologies have effected only minor switches in the mammalian cardiac myosin isoforms. Using cardiac-specific transgenesis, we have now obtained major myosin isoform shifts and/or replacements. Clusters of non-identical amino acids are found in functionally important regions, i.e. the surface loops 1 and 2, suggesting that these structures may regulate isoform-specific characteristics. Loop 1 alters filament sliding velocity, whereas Loop 2 modulates actin-activated ATPase rate in Dictyostelium myosin, but this remains untested in mammalian cardiac myosins. Alpha --> beta isoform switches were engineered into mouse hearts via transgenesis. To assess the structural basis of isoform diversity, chimeric myosins in which the sequences of either Loop 1+Loop 2 or Loop 2 of alpha-myosin were exchanged for those of beta-myosin were expressed in vivo. 2-fold differences in filament sliding velocity and ATPase activity were found between the two isoforms. Filament sliding velocity of the Loop 1+Loop 2 chimera and the ATPase activities of both loop chimeras were not significantly different compared with alpha-myosin. In mouse cardiac isoforms, myosin functionality does not depend on Loop 1 or Loop 2 sequences and must lie partially in other non-homologous residues.
Similar articles
- Distribution and structure-function relationship of myosin heavy chain isoforms in the adult mouse heart.
Krenz M, Sadayappan S, Osinska HE, Henry JA, Beck S, Warshaw DM, Robbins J. Krenz M, et al. J Biol Chem. 2007 Aug 17;282(33):24057-64. doi: 10.1074/jbc.M704574200. Epub 2007 Jun 16. J Biol Chem. 2007. PMID: 17575272 - Structure-function relationships of the two surface loops of myosin heavy chain isoforms from thermally acclimated carp.
Hirayama Y, Sutoh K, Watabe S. Hirayama Y, et al. Biochem Biophys Res Commun. 2000 Mar 5;269(1):237-41. doi: 10.1006/bbrc.2000.2273. Biochem Biophys Res Commun. 2000. PMID: 10694506 - Cardiac myosin isoforms from different species have unique enzymatic and mechanical properties.
Malmqvist UP, Aronshtam A, Lowey S. Malmqvist UP, et al. Biochemistry. 2004 Nov 30;43(47):15058-65. doi: 10.1021/bi0495329. Biochemistry. 2004. PMID: 15554713 - Temperature plasticity of contractile proteins in fish muscle.
Watabe S. Watabe S. J Exp Biol. 2002 Aug;205(Pt 15):2231-6. doi: 10.1242/jeb.205.15.2231. J Exp Biol. 2002. PMID: 12110657 Review. - C-terminal isoforms of the myosin heavy chain and smooth muscle function.
Martin AF, Bhatti S, Paul RJ. Martin AF, et al. Comp Biochem Physiol B Biochem Mol Biol. 1997 May;117(1):3-11. doi: 10.1016/s0305-0491(96)00308-2. Comp Biochem Physiol B Biochem Mol Biol. 1997. PMID: 9180009 Review.
Cited by
- Myosin-driven rescue of contractile reserve and energetics in mouse hearts bearing familial hypertrophic cardiomyopathy-associated mutant troponin T is mutation-specific.
He H, Hoyer K, Tao H, Rice R, Jimenez J, Tardiff JC, Ingwall JS. He H, et al. J Physiol. 2012 Nov 1;590(21):5371-88. doi: 10.1113/jphysiol.2012.234252. Epub 2012 Aug 20. J Physiol. 2012. PMID: 22907055 Free PMC article. - Effects of the mutation R145G in human cardiac troponin I on the kinetics of the contraction-relaxation cycle in isolated cardiac myofibrils.
Kruger M, Zittrich S, Redwood C, Blaudeck N, James J, Robbins J, Pfitzer G, Stehle R. Kruger M, et al. J Physiol. 2005 Apr 15;564(Pt 2):347-57. doi: 10.1113/jphysiol.2004.079095. Epub 2005 Feb 17. J Physiol. 2005. PMID: 15718266 Free PMC article. - Five Alternative Myosin Converter Domains Influence Muscle Power, Stretch Activation, and Kinetics.
Glasheen BM, Ramanath S, Patel M, Sheppard D, Puthawala JT, Riley LA, Swank DM. Glasheen BM, et al. Biophys J. 2018 Mar 13;114(5):1142-1152. doi: 10.1016/j.bpj.2017.12.045. Biophys J. 2018. PMID: 29539400 Free PMC article. - Molecular mechanism of diabetic cardiomyopathy and modulation of microRNA function by synthetic oligonucleotides.
Ghosh N, Katare R. Ghosh N, et al. Cardiovasc Diabetol. 2018 Mar 22;17(1):43. doi: 10.1186/s12933-018-0684-1. Cardiovasc Diabetol. 2018. PMID: 29566757 Free PMC article. Review. - Fibrosis, not cell size, delineates beta-myosin heavy chain reexpression during cardiac hypertrophy and normal aging in vivo.
Pandya K, Kim HS, Smithies O. Pandya K, et al. Proc Natl Acad Sci U S A. 2006 Nov 7;103(45):16864-9. doi: 10.1073/pnas.0607700103. Epub 2006 Oct 26. Proc Natl Acad Sci U S A. 2006. PMID: 17068123 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
- HL52318/HL/NHLBI NIH HHS/United States
- HL56370/HL/NHLBI NIH HHS/United States
- HL60546/HL/NHLBI NIH HHS/United States
- HL66157/HL/NHLBI NIH HHS/United States
- HL69799/HL/NHLBI NIH HHS/United States
LinkOut - more resources
Full Text Sources
Molecular Biology Databases