Analysis of myosin heavy chain functionality in the heart - PubMed (original) (raw)
. 2003 May 9;278(19):17466-74.
doi: 10.1074/jbc.M210804200. Epub 2003 Mar 6.
Atsushi Sanbe, Florence Bouyer-Dalloz, James Gulick, Raisa Klevitsky, Timothy E Hewett, Hanna E Osinska, John N Lorenz, Christine Brosseau, Andrea Federico, Norman R Alpert, David M Warshaw, M Benjamin Perryman, Steve M Helmke, Jeffrey Robbins
Affiliations
- PMID: 12626511
- DOI: 10.1074/jbc.M210804200
Free article
Analysis of myosin heavy chain functionality in the heart
Maike Krenz et al. J Biol Chem. 2003.
Free article
Abstract
Comparison of mammalian cardiac alpha- and beta-myosin heavy chain isoforms reveals 93% identity. To date, genetic methodologies have effected only minor switches in the mammalian cardiac myosin isoforms. Using cardiac-specific transgenesis, we have now obtained major myosin isoform shifts and/or replacements. Clusters of non-identical amino acids are found in functionally important regions, i.e. the surface loops 1 and 2, suggesting that these structures may regulate isoform-specific characteristics. Loop 1 alters filament sliding velocity, whereas Loop 2 modulates actin-activated ATPase rate in Dictyostelium myosin, but this remains untested in mammalian cardiac myosins. Alpha --> beta isoform switches were engineered into mouse hearts via transgenesis. To assess the structural basis of isoform diversity, chimeric myosins in which the sequences of either Loop 1+Loop 2 or Loop 2 of alpha-myosin were exchanged for those of beta-myosin were expressed in vivo. 2-fold differences in filament sliding velocity and ATPase activity were found between the two isoforms. Filament sliding velocity of the Loop 1+Loop 2 chimera and the ATPase activities of both loop chimeras were not significantly different compared with alpha-myosin. In mouse cardiac isoforms, myosin functionality does not depend on Loop 1 or Loop 2 sequences and must lie partially in other non-homologous residues.
Similar articles
- Distribution and structure-function relationship of myosin heavy chain isoforms in the adult mouse heart.
Krenz M, Sadayappan S, Osinska HE, Henry JA, Beck S, Warshaw DM, Robbins J. Krenz M, et al. J Biol Chem. 2007 Aug 17;282(33):24057-64. doi: 10.1074/jbc.M704574200. Epub 2007 Jun 16. J Biol Chem. 2007. PMID: 17575272 - Structure-function relationships of the two surface loops of myosin heavy chain isoforms from thermally acclimated carp.
Hirayama Y, Sutoh K, Watabe S. Hirayama Y, et al. Biochem Biophys Res Commun. 2000 Mar 5;269(1):237-41. doi: 10.1006/bbrc.2000.2273. Biochem Biophys Res Commun. 2000. PMID: 10694506 - Cardiac myosin isoforms from different species have unique enzymatic and mechanical properties.
Malmqvist UP, Aronshtam A, Lowey S. Malmqvist UP, et al. Biochemistry. 2004 Nov 30;43(47):15058-65. doi: 10.1021/bi0495329. Biochemistry. 2004. PMID: 15554713 - Temperature plasticity of contractile proteins in fish muscle.
Watabe S. Watabe S. J Exp Biol. 2002 Aug;205(Pt 15):2231-6. doi: 10.1242/jeb.205.15.2231. J Exp Biol. 2002. PMID: 12110657 Review. - C-terminal isoforms of the myosin heavy chain and smooth muscle function.
Martin AF, Bhatti S, Paul RJ. Martin AF, et al. Comp Biochem Physiol B Biochem Mol Biol. 1997 May;117(1):3-11. doi: 10.1016/s0305-0491(96)00308-2. Comp Biochem Physiol B Biochem Mol Biol. 1997. PMID: 9180009 Review.
Cited by
- Transgenic mouse α- and β-cardiac myosins containing the R403Q mutation show isoform-dependent transient kinetic differences.
Lowey S, Bretton V, Gulick J, Robbins J, Trybus KM. Lowey S, et al. J Biol Chem. 2013 May 24;288(21):14780-7. doi: 10.1074/jbc.M113.450668. Epub 2013 Apr 11. J Biol Chem. 2013. PMID: 23580644 Free PMC article. - Role of myosin heavy chain composition in the stretch activation response of rat myocardium.
Stelzer JE, Brickson SL, Locher MR, Moss RL. Stelzer JE, et al. J Physiol. 2007 Feb 15;579(Pt 1):161-73. doi: 10.1113/jphysiol.2006.119719. Epub 2006 Nov 30. J Physiol. 2007. PMID: 17138609 Free PMC article. - Developmental increase in β-MHC enhances sarcomere length-dependent activation in the myocardium.
Reda SM, Gollapudi SK, Chandra M. Reda SM, et al. J Gen Physiol. 2019 May 6;151(5):635-644. doi: 10.1085/jgp.201812183. Epub 2019 Jan 2. J Gen Physiol. 2019. PMID: 30602626 Free PMC article. - Modulation of myosin by cardiac myosin binding protein-C peptides improves cardiac contractility in ex-vivo experimental heart failure models.
Hou L, Kumar M, Anand P, Chen Y, El-Bizri N, Pickens CJ, Seganish WM, Sadayappan S, Swaminath G. Hou L, et al. Sci Rep. 2022 Mar 14;12(1):4337. doi: 10.1038/s41598-022-08169-1. Sci Rep. 2022. PMID: 35288601 Free PMC article. - Transgenic overexpression of cardiac actin in the mouse heart suggests coregulation of cardiac, skeletal and vascular actin expression.
Kumar A, Crawford K, Flick R, Klevitsky R, Lorenz JN, Bove KE, Robbins J, Lessard JL. Kumar A, et al. Transgenic Res. 2004 Dec;13(6):531-40. doi: 10.1007/s11248-004-2823-6. Transgenic Res. 2004. PMID: 15672834
Publication types
MeSH terms
Substances
Grants and funding
- HL52318/HL/NHLBI NIH HHS/United States
- HL56370/HL/NHLBI NIH HHS/United States
- HL60546/HL/NHLBI NIH HHS/United States
- HL66157/HL/NHLBI NIH HHS/United States
- HL69799/HL/NHLBI NIH HHS/United States
LinkOut - more resources
Full Text Sources
Molecular Biology Databases