CTP:glycerol 3-phosphate cytidylyltransferase (TarD) from Staphylococcus aureus catalyzes the cytidylyl transfer via an ordered Bi-Bi reaction mechanism with micromolar K(m) values - PubMed (original) (raw)
Comparative Study
. 2003 Mar 21;1646(1-2):196-206.
doi: 10.1016/s1570-9639(03)00019-0.
Affiliations
- PMID: 12637027
- DOI: 10.1016/s1570-9639(03)00019-0
Comparative Study
CTP:glycerol 3-phosphate cytidylyltransferase (TarD) from Staphylococcus aureus catalyzes the cytidylyl transfer via an ordered Bi-Bi reaction mechanism with micromolar K(m) values
David S Badurina et al. Biochim Biophys Acta. 2003.
Abstract
CTP:glycerol 3-phosphate cytidylyltransferase catalyzes the formation of CDP-glycerol, an activated form of glycerol 3-phosphate and key precursor to wall teichoic acid biogenesis in Gram-positive bacteria. There is high sequence identity (69%) between the CTP:glycerol 3-phosphate cytidylyltransferases from Bacillus subtilis 168 (TagD) and Staphylococcus aureus (TarD). The B. subtilis TagD protein was shown to catalyze cytidylyltransferase via a random mechanism with millimolar K(m) values for both CTP and glycerol 3-phosphate [J. Biol. Chem. 268, (1993) 16648] and exhibited negative cooperativity in the binding of substrates but not in catalysis [J. Biol. Chem. 276, (2001) 37922]. In the work described here on the S. aureus TarD protein, we have elucidated a steady state kinetic mechanism that is markedly different from that determined for B. subtilis TagD. Steady state kinetic experiments with recombinant, purified TarD employed a high-performance liquid chromatography assay developed in this work. The data were consistent with a ternary complex model. The K(m) values for CTP and glycerol 3-phosphate were 36 and 21 microM, respectively, and the k(cat) was 2.6 s(-1). Steady state kinetic analysis of the reverse (pyrophosphorylase) reaction was also consistent with a ternary complex model. Product inhibition studies indicated an ordered Bi-Bi reaction mechanism where glycerol 3-phosphate was the leading substrate and the release of CDP-glycerol preceded that of pyrophosphate. Finally, we investigated the capacity of S. aureus tarD to substitute for tagD in B. subtilis. The tarD gene was placed under control of the xylose promoter in a B. subtilis 168 mutant defective in tagD (temperature-sensitive, tag-12). Growth of the resulting strain at the restrictive temperature (47 degrees C) was shown to be xylose-dependent.
Similar articles
- Crystal structure of CTP:glycerol-3-phosphate cytidylyltransferase from Staphylococcus aureus: examination of structural basis for kinetic mechanism.
Fong DH, Yim VC, D'Elia MA, Brown ED, Berghuis AM. Fong DH, et al. Biochim Biophys Acta. 2006 Jan;1764(1):63-9. doi: 10.1016/j.bbapap.2005.10.015. Epub 2005 Nov 10. Biochim Biophys Acta. 2006. PMID: 16344011 - Expression, purification, and characterization of CTP:glycerol-3-phosphate cytidylyltransferase from Bacillus subtilis.
Park YS, Sweitzer TD, Dixon JE, Kent C. Park YS, et al. J Biol Chem. 1993 Aug 5;268(22):16648-54. J Biol Chem. 1993. PMID: 8393871 - Occurrence and function of membrane teichoic acids.
Lambert PA, Hancock IC, Baddiley J. Lambert PA, et al. Biochim Biophys Acta. 1977 May 31;472(1):1-12. doi: 10.1016/0304-4157(77)90012-0. Biochim Biophys Acta. 1977. PMID: 406922 Review. - CTP:phosphoethanolamine cytidylyltransferase.
Bladergroen BA, van Golde LM. Bladergroen BA, et al. Biochim Biophys Acta. 1997 Sep 4;1348(1-2):91-9. doi: 10.1016/s0005-2760(97)00113-6. Biochim Biophys Acta. 1997. PMID: 9370320 Review.
Cited by
- A revised pathway proposed for Staphylococcus aureus wall teichoic acid biosynthesis based on in vitro reconstitution of the intracellular steps.
Brown S, Zhang YH, Walker S. Brown S, et al. Chem Biol. 2008 Jan;15(1):12-21. doi: 10.1016/j.chembiol.2007.11.011. Chem Biol. 2008. PMID: 18215769 Free PMC article. - Wall teichoic acids of gram-positive bacteria.
Brown S, Santa Maria JP Jr, Walker S. Brown S, et al. Annu Rev Microbiol. 2013;67:313-36. doi: 10.1146/annurev-micro-092412-155620. Annu Rev Microbiol. 2013. PMID: 24024634 Free PMC article. Review. - Comparative kinetic analysis of glycerol 3-phosphate cytidylyltransferase from Enterococcus faecalis and Listeria monocytogenes.
Mericl AN, Friesen JA. Mericl AN, et al. Med Sci Monit. 2012 Nov;18(11):BR427-34. doi: 10.12659/msm.883535. Med Sci Monit. 2012. PMID: 23111733 Free PMC article. - Staphylococcus aureus and Bacillus subtilis W23 make polyribitol wall teichoic acids using different enzymatic pathways.
Brown S, Meredith T, Swoboda J, Walker S. Brown S, et al. Chem Biol. 2010 Oct 29;17(10):1101-10. doi: 10.1016/j.chembiol.2010.07.017. Chem Biol. 2010. PMID: 21035733 Free PMC article. - Structure of the bacterial teichoic acid polymerase TagF provides insights into membrane association and catalysis.
Lovering AL, Lin LY, Sewell EW, Spreter T, Brown ED, Strynadka NC. Lovering AL, et al. Nat Struct Mol Biol. 2010 May;17(5):582-9. doi: 10.1038/nsmb.1819. Epub 2010 Apr 18. Nat Struct Mol Biol. 2010. PMID: 20400947
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous