Biophysical constraints for protein structure prediction - PubMed (original) (raw)
. 2003 Jan-Feb;2(1):37-42.
doi: 10.1021/pr025552q.
Affiliations
- PMID: 12643541
- DOI: 10.1021/pr025552q
Biophysical constraints for protein structure prediction
Olga Tcherkasskaya et al. J Proteome Res. 2003 Jan-Feb.
Abstract
Though highly desirable, neither a single experimental technique nor a computational approach can be sufficient enough to rationalize a protein structure. The incorporation of biophysical constraints, which can be rationalized based on conventional biophysical measurements, might lead to considerable improvement of the simulation procedures. In this regard, our analysis of 180 proteins in different conformational states allows prediction of the overall protein dimension based on the chain length, i.e., the protein molecular weight, with an accuracy of 10%.
Similar articles
- Normal-modes-based prediction of protein conformational changes guided by distance constraints.
Zheng W, Brooks BR. Zheng W, et al. Biophys J. 2005 May;88(5):3109-17. doi: 10.1529/biophysj.104.058453. Epub 2005 Feb 18. Biophys J. 2005. PMID: 15722427 Free PMC article. - Quantifying kinetic paths of protein folding.
Wang J, Zhang K, Lu H, Wang E. Wang J, et al. Biophys J. 2005 Sep;89(3):1612-20. doi: 10.1529/biophysj.104.055186. Epub 2005 Jul 1. Biophys J. 2005. PMID: 15994895 Free PMC article. - Frustration and hydrophobicity interplay in protein folding and protein evolution.
Oliveira LC, Silva RT, Leite VB, Chahine J. Oliveira LC, et al. J Chem Phys. 2006 Aug 28;125(8):084904. doi: 10.1063/1.2335638. J Chem Phys. 2006. PMID: 16965054 - Conformational stability and folding mechanisms of dimeric proteins.
Rumfeldt JA, Galvagnion C, Vassall KA, Meiering EM. Rumfeldt JA, et al. Prog Biophys Mol Biol. 2008 Sep;98(1):61-84. doi: 10.1016/j.pbiomolbio.2008.05.004. Epub 2008 Jun 8. Prog Biophys Mol Biol. 2008. PMID: 18602415 Review. - Assessing the accuracy of physical models used in protein-folding simulations: quantitative evidence from long molecular dynamics simulations.
Piana S, Klepeis JL, Shaw DE. Piana S, et al. Curr Opin Struct Biol. 2014 Feb;24:98-105. doi: 10.1016/j.sbi.2013.12.006. Epub 2014 Jan 24. Curr Opin Struct Biol. 2014. PMID: 24463371 Review.
Cited by
- Hydrodynamic Radii of Intrinsically Disordered Proteins Determined from Experimental Polyproline II Propensities.
Tomasso ME, Tarver MJ, Devarajan D, Whitten ST. Tomasso ME, et al. PLoS Comput Biol. 2016 Jan 4;12(1):e1004686. doi: 10.1371/journal.pcbi.1004686. eCollection 2016 Jan. PLoS Comput Biol. 2016. PMID: 26727467 Free PMC article. - Understanding protein non-folding.
Uversky VN, Dunker AK. Uversky VN, et al. Biochim Biophys Acta. 2010 Jun;1804(6):1231-64. doi: 10.1016/j.bbapap.2010.01.017. Epub 2010 Feb 1. Biochim Biophys Acta. 2010. PMID: 20117254 Free PMC article. Review. - Diversity of hydrodynamic radii of intrinsically disordered proteins.
Białobrzewski MK, Klepka BP, Michaś A, Cieplak-Rotowska MK, Staszałek Z, Niedźwiecka A. Białobrzewski MK, et al. Eur Biophys J. 2023 Oct;52(6-7):607-618. doi: 10.1007/s00249-023-01683-8. Epub 2023 Oct 13. Eur Biophys J. 2023. PMID: 37831084 Free PMC article. - Under-folded proteins: Conformational ensembles and their roles in protein folding, function, and pathogenesis.
Uversky VN. Uversky VN. Biopolymers. 2013 Nov;99(11):870-87. doi: 10.1002/bip.22298. Biopolymers. 2013. PMID: 23754493 Free PMC article. - A bimodal distribution of two distinct categories of intrinsically disordered structures with separate functions in FG nucleoporins.
Yamada J, Phillips JL, Patel S, Goldfien G, Calestagne-Morelli A, Huang H, Reza R, Acheson J, Krishnan VV, Newsam S, Gopinathan A, Lau EY, Colvin ME, Uversky VN, Rexach MF. Yamada J, et al. Mol Cell Proteomics. 2010 Oct;9(10):2205-24. doi: 10.1074/mcp.M000035-MCP201. Epub 2010 Apr 5. Mol Cell Proteomics. 2010. PMID: 20368288 Free PMC article.