Mutations in exon 2 of GATA1 are early events in megakaryocytic malignancies associated with trisomy 21 - PubMed (original) (raw)
. 2003 Aug 1;102(3):981-6.
doi: 10.1182/blood-2002-11-3599. Epub 2003 Mar 20.
Dan Bercovich, Sabine Strehl, Andrea Teigler-Schlegel, Batia Stark, Jan Trka, Ninette Amariglio, Andrea Biondi, Inna Muler, Gideon Rechavi, Helena Kempski, Oskar A Haas, Shai Izraeli
Affiliations
- PMID: 12649131
- DOI: 10.1182/blood-2002-11-3599
Free article
Mutations in exon 2 of GATA1 are early events in megakaryocytic malignancies associated with trisomy 21
Liat Rainis et al. Blood. 2003.
Free article
Abstract
Patients with Down syndrome (DS) frequently develop 2 kinds of clonal megakaryocytosis: a common, congenital, spontaneously resolving, transient myeloproliferative disorder (TMD) and, less commonly, childhood acute megakaryoblastic leukemia (AMKL). Recently, acquired mutations in exon 2 of GATA1, an X-linked gene encoding a transcription factor that promotes megakaryocytic differentiation, were described in 6 DS patients with AMKL. The mutations prevent the synthesis of the full-length GATA1, but allow the synthesis of a shorter GATA1 protein (GATA1s) that lacks the transactivation domain. To test whether mutated GATA1 is involved in the initiation of clonal megakaryoblastic proliferation or in the progression to AMKL, we screened 35 DS patients with either AMKL or TMD and 7 non-DS children with AMKL for mutations in exon 2 of GATA1. Mutations were identified in 16 of 18 DS patients with AMKL, in 16 of 17 DS patients with TMD, and in 2 identical twins with AMKL and acquired trisomy 21. Analysis revealed various types of mutations in GATA1, including deletion/insertions, splice mutations, and nonsense and missense point mutations, all of which prevent the generation of full-length GATA1, but preserve the translation of GATA1s. We also show that the likely mechanism of generation of GATA1 isoforms is alternative splicing of exon 2 rather than, or in addition to, alternative translation initiation, as was proposed before. These findings suggest that acquired intrauterine inactivating mutations in GATA1 and generation of GATA1s cooperate frequently with trisomy 21 in initiating megakaryoblastic proliferation, but are insufficient for progression to AMKL.
Similar articles
- Mutations in GATA1 in both transient myeloproliferative disorder and acute megakaryoblastic leukemia of Down syndrome.
Greene ME, Mundschau G, Wechsler J, McDevitt M, Gamis A, Karp J, Gurbuxani S, Arceci R, Crispino JD. Greene ME, et al. Blood Cells Mol Dis. 2003 Nov-Dec;31(3):351-6. doi: 10.1016/j.bcmd.2003.08.001. Blood Cells Mol Dis. 2003. PMID: 14636651 - Natural history of GATA1 mutations in Down syndrome.
Ahmed M, Sternberg A, Hall G, Thomas A, Smith O, O'Marcaigh A, Wynn R, Stevens R, Addison M, King D, Stewart B, Gibson B, Roberts I, Vyas P. Ahmed M, et al. Blood. 2004 Apr 1;103(7):2480-9. doi: 10.1182/blood-2003-10-3383. Epub 2003 Dec 4. Blood. 2004. PMID: 14656875 - Mutagenesis of GATA1 is an initiating event in Down syndrome leukemogenesis.
Mundschau G, Gurbuxani S, Gamis AS, Greene ME, Arceci RJ, Crispino JD. Mundschau G, et al. Blood. 2003 Jun 1;101(11):4298-300. doi: 10.1182/blood-2002-12-3904. Epub 2003 Jan 30. Blood. 2003. PMID: 12560215 - Acute megakaryoblastic leukaemia (AMKL) and transient myeloproliferative disorder (TMD) in Down syndrome: a multi-step model of myeloid leukaemogenesis.
Roy A, Roberts I, Norton A, Vyas P. Roy A, et al. Br J Haematol. 2009 Oct;147(1):3-12. doi: 10.1111/j.1365-2141.2009.07789.x. Epub 2009 Jul 6. Br J Haematol. 2009. PMID: 19594743 Review.
Cited by
- GATA1 in Normal and Pathologic Megakaryopoiesis and Platelet Development.
Takasaki K, Chou ST. Takasaki K, et al. Adv Exp Med Biol. 2024;1459:261-287. doi: 10.1007/978-3-031-62731-6_12. Adv Exp Med Biol. 2024. PMID: 39017848 Review. - Survival outcomes of children with relapsed or refractory myeloid leukemia associated with Down syndrome.
Raghuram N, Hasegawa D, Nakashima K, Rahman S, Antoniou E, Skajaa T, Merli P, Verma A, Rabin KR, Aftandilian C, Kotecha RS, Cheuk D, Jahnukainen K, Kolenova A, Balwierz W, Norton A, O'Brien M, Cellot S, Chopek A, Arad-Cohen N, Goemans B, Rojas-Vasquez M, Ariffin H, Bartram J, Kolb EA, Locatelli F, Klusmann JH, Hasle H, McGuire B, Hasnain A, Sung L, Hitzler J. Raghuram N, et al. Blood Adv. 2023 Nov 14;7(21):6532-6539. doi: 10.1182/bloodadvances.2022009381. Blood Adv. 2023. PMID: 36735769 Free PMC article. - Layered immunity and layered leukemogenicity: Developmentally restricted mechanisms of pediatric leukemia initiation.
Mendoza-Castrejon J, Magee JA. Mendoza-Castrejon J, et al. Immunol Rev. 2023 May;315(1):197-215. doi: 10.1111/imr.13180. Epub 2023 Jan 2. Immunol Rev. 2023. PMID: 36588481 Free PMC article. Review. - Leukemogenesis in infants and young children with trisomy 21.
Roberts I. Roberts I. Hematology Am Soc Hematol Educ Program. 2022 Dec 9;2022(1):1-8. doi: 10.1182/hematology.2022000395. Hematology Am Soc Hematol Educ Program. 2022. PMID: 36485097 Free PMC article. - Mechanism of KIT gene regulation by GATA1 lacking the N-terminal domain in Down syndrome-related myeloid disorders.
Kanezaki R, Toki T, Terui K, Sato T, Kobayashi A, Kudo K, Kamio T, Sasaki S, Kawaguchi K, Watanabe K, Ito E. Kanezaki R, et al. Sci Rep. 2022 Nov 29;12(1):20587. doi: 10.1038/s41598-022-25046-z. Sci Rep. 2022. PMID: 36447001 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical