Calcium/calmodulin-dependent protein kinase activates serum response factor transcription activity by its dissociation from histone deacetylase, HDAC4. Implications in cardiac muscle gene regulation during hypertrophy - PubMed (original) (raw)
. 2003 May 30;278(22):20047-58.
doi: 10.1074/jbc.M209998200. Epub 2003 Mar 26.
Affiliations
- PMID: 12663674
- DOI: 10.1074/jbc.M209998200
Free article
Calcium/calmodulin-dependent protein kinase activates serum response factor transcription activity by its dissociation from histone deacetylase, HDAC4. Implications in cardiac muscle gene regulation during hypertrophy
Francesca J Davis et al. J Biol Chem. 2003.
Free article
Abstract
Serum response factor (SRF) plays a pivotal role in cardiac myocyte development, muscle gene transcription, and hypertrophy. Previously, elevation of intracellular levels of Ca2+ was shown to activate SRF function without involving the Ets family of tertiary complex factors through an unknown regulatory mechanism. Here, we tested the hypothesis that the chromatin remodeling enzymes of class II histone deacetylases (HDAC4) regulate SRF activity in a Ca2+-sensitive manner. Expression of HDAC4 profoundly repressed SRF-mediated transcription in both muscle and nonmuscle cells. Protein interaction studies demonstrated physical association of HDAC4 with SRF in living cells. The SRF/HDAC4 co-association was disrupted by treatment of cells with hypertrophic agonists such as angiotensin-II and a Ca2+ ionophore, ionomycin. Furthermore, activation of Ca2+/calmodulin-dependent protein kinase (CaMK)-IV prevented SRF/HDAC4 interaction and derepressed SRF-dependent transcription activity. The SRF.HDAC4 complex was localized to the cell nucleus, and the activated CaMK-IV disrupted HDAC4/SRF association, leading to export of HDAC4 from the nucleus and stimulation of SRF transcription activity. Thus, these results identify SRF as a functional interacting target of HDAC4 and define a novel tertiary complex factor-independent mechanism for SRF activation by Ca2+/CaMK-mediated signaling.
Similar articles
- Nuclear calcium/calmodulin-dependent protein kinase IIdelta preferentially transmits signals to histone deacetylase 4 in cardiac cells.
Little GH, Bai Y, Williams T, Poizat C. Little GH, et al. J Biol Chem. 2007 Mar 9;282(10):7219-31. doi: 10.1074/jbc.M604281200. Epub 2006 Dec 19. J Biol Chem. 2007. PMID: 17179159 - Class II HDACs mediate CaMK-dependent signaling to NRSF in ventricular myocytes.
Nakagawa Y, Kuwahara K, Harada M, Takahashi N, Yasuno S, Adachi Y, Kawakami R, Nakanishi M, Tanimoto K, Usami S, Kinoshita H, Saito Y, Nakao K. Nakagawa Y, et al. J Mol Cell Cardiol. 2006 Dec;41(6):1010-22. doi: 10.1016/j.yjmcc.2006.08.010. Epub 2006 Oct 2. J Mol Cell Cardiol. 2006. PMID: 17011572 - CaM kinase IIdeltaC phosphorylation of 14-3-3beta in vascular smooth muscle cells: activation of class II HDAC repression.
Ellis JJ, Valencia TG, Zeng H, Roberts LD, Deaton RA, Grant SR. Ellis JJ, et al. Mol Cell Biochem. 2003 Jan;242(1-2):153-61. Mol Cell Biochem. 2003. PMID: 12619878 - Parallel mechanisms for resting nucleo-cytoplasmic shuttling and activity dependent translocation provide dual control of transcriptional regulators HDAC and NFAT in skeletal muscle fiber type plasticity.
Shen T, Liu Y, Randall WR, Schneider MF. Shen T, et al. J Muscle Res Cell Motil. 2006;27(5-7):405-11. doi: 10.1007/s10974-006-9080-7. Epub 2006 Jul 28. J Muscle Res Cell Motil. 2006. PMID: 16874450 Review. - Derepression of pathological cardiac genes by members of the CaM kinase superfamily.
McKinsey TA. McKinsey TA. Cardiovasc Res. 2007 Mar 1;73(4):667-77. doi: 10.1016/j.cardiores.2006.11.036. Epub 2006 Dec 5. Cardiovasc Res. 2007. PMID: 17217938 Review.
Cited by
- Sisters Acts: Converging Signaling Between CaMKII and CaMKIV, Two Members of the Same Family.
Rusciano MR, Maione AS, Illario M. Rusciano MR, et al. Transl Med UniSa. 2012 Oct 11;4:66-72. Print 2012 Sep. Transl Med UniSa. 2012. PMID: 23905065 Free PMC article. - CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy.
Backs J, Song K, Bezprozvannaya S, Chang S, Olson EN. Backs J, et al. J Clin Invest. 2006 Jul;116(7):1853-64. doi: 10.1172/JCI27438. Epub 2006 Jun 8. J Clin Invest. 2006. PMID: 16767219 Free PMC article. - Dephosphorylation and caspase processing generate distinct nuclear pools of histone deacetylase 4.
Paroni G, Fontanini A, Cernotta N, Foti C, Gupta MP, Yang XJ, Fasino D, Brancolini C. Paroni G, et al. Mol Cell Biol. 2007 Oct;27(19):6718-32. doi: 10.1128/MCB.00853-07. Epub 2007 Jul 16. Mol Cell Biol. 2007. PMID: 17636017 Free PMC article. - SNTA1-deficient human cardiomyocytes demonstrate hypertrophic phenotype and calcium handling disorder.
Dong T, Zhao Y, Jin HF, Shen L, Lin Y, Si LL, Chen L, Liu JC. Dong T, et al. Stem Cell Res Ther. 2022 Jun 30;13(1):288. doi: 10.1186/s13287-022-02955-4. Stem Cell Res Ther. 2022. PMID: 35773684 Free PMC article. - Histone deacetylase signaling in cardioprotection.
Lehmann LH, Worst BC, Stanmore DA, Backs J. Lehmann LH, et al. Cell Mol Life Sci. 2014 May;71(9):1673-90. doi: 10.1007/s00018-013-1516-9. Epub 2013 Dec 6. Cell Mol Life Sci. 2014. PMID: 24310814 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous