Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides - PubMed (original) (raw)
doi: 10.1038/nbt810. Epub 2003 Mar 31.
Affiliations
- PMID: 12665801
- DOI: 10.1038/nbt810
Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides
Kris Gevaert et al. Nat Biotechnol. 2003 May.
Abstract
Current non-gel techniques for analyzing proteomes rely heavily on mass spectrometric analysis of enzymatically digested protein mixtures. Prior to analysis, a highly complex peptide mixture is either separated on a multidimensional chromatographic system or it is first reduced in complexity by isolating sets of representative peptides. Recently, we developed a peptide isolation procedure based on diagonal electrophoresis and diagonal chromatography. We call it combined fractional diagonal chromatography (COFRADIC). In previous experiments, we used COFRADIC to identify more than 800 Escherichia coli proteins by tandem mass spectrometric (MS/MS) analysis of isolated methionine-containing peptides. Here, we describe a diagonal method to isolate N-terminal peptides. This reduces the complexity of the peptide sample, because each protein has one N terminus and is thus represented by only one peptide. In this new procedure, free amino groups in proteins are first blocked by acetylation and then digested with trypsin. After reverse-phase (RP) chromatographic fractionation of the generated peptide mixture, internal peptides are blocked using 2,4,6-trinitrobenzenesulfonic acid (TNBS); they display a strong hydrophobic shift and therefore segregate from the unaltered N-terminal peptides during a second identical separation step. N-terminal peptides can thereby be specifically collected for further liquid chromatography (LC)-MS/MS analysis. Omitting the acetylation step results in the isolation of non-lysine-containing N-terminal peptides from in vivo blocked proteins.
Similar articles
- Characterization of platelet proteins using peptide centric proteomics.
Simon O, Wortelkamp S, Sickmann A. Simon O, et al. Methods Mol Biol. 2009;564:155-71. doi: 10.1007/978-1-60761-157-8_9. Methods Mol Biol. 2009. PMID: 19544022 - Improved recovery of proteome-informative, protein N-terminal peptides by combined fractional diagonal chromatography (COFRADIC).
Staes A, Van Damme P, Helsens K, Demol H, Vandekerckhove J, Gevaert K. Staes A, et al. Proteomics. 2008 Apr;8(7):1362-70. doi: 10.1002/pmic.200700950. Proteomics. 2008. PMID: 18318009 - Reversible labeling of cysteine-containing peptides allows their specific chromatographic isolation for non-gel proteome studies.
Gevaert K, Ghesquière B, Staes A, Martens L, Van Damme J, Thomas GR, Vandekerckhove J. Gevaert K, et al. Proteomics. 2004 Apr;4(4):897-908. doi: 10.1002/pmic.200300641. Proteomics. 2004. PMID: 15048972 - Protein processing and other modifications analyzed by diagonal peptide chromatography.
Gevaert K, Van Damme P, Ghesquière B, Vandekerckhove J. Gevaert K, et al. Biochim Biophys Acta. 2006 Dec;1764(12):1801-10. doi: 10.1016/j.bbapap.2006.09.003. Epub 2006 Sep 14. Biochim Biophys Acta. 2006. PMID: 17035109 Review. - Reverse-phase diagonal chromatography for phosphoproteome research.
Gevaert K, Vandekerckhove J. Gevaert K, et al. Methods Mol Biol. 2009;527:219-27, ix. doi: 10.1007/978-1-60327-834-8_16. Methods Mol Biol. 2009. PMID: 19241016 Review.
Cited by
- Unbiased selective isolation of protein N-terminal peptides from complex proteome samples using phospho tagging (PTAG) and TiO(2)-based depletion.
Mommen GP, van de Waterbeemd B, Meiring HD, Kersten G, Heck AJ, de Jong AP. Mommen GP, et al. Mol Cell Proteomics. 2012 Sep;11(9):832-42. doi: 10.1074/mcp.O112.018283. Epub 2012 Jun 22. Mol Cell Proteomics. 2012. PMID: 22729381 Free PMC article. - N-CLAP: global profiling of N-termini by chemoselective labeling of the alpha-amine of proteins.
Xu G, Jaffrey SR. Xu G, et al. Cold Spring Harb Protoc. 2010 Nov 1;2010(11):pdb.prot5528. doi: 10.1101/pdb.prot5528. Cold Spring Harb Protoc. 2010. PMID: 21041401 Free PMC article. - Network analyses reveal pervasive functional regulation between proteases in the human protease web.
Fortelny N, Cox JH, Kappelhoff R, Starr AE, Lange PF, Pavlidis P, Overall CM. Fortelny N, et al. PLoS Biol. 2014 May 27;12(5):e1001869. doi: 10.1371/journal.pbio.1001869. eCollection 2014 May. PLoS Biol. 2014. PMID: 24865846 Free PMC article. - N-terminal Proteomics Assisted Profiling of the Unexplored Translation Initiation Landscape in Arabidopsis thaliana.
Willems P, Ndah E, Jonckheere V, Stael S, Sticker A, Martens L, Van Breusegem F, Gevaert K, Van Damme P. Willems P, et al. Mol Cell Proteomics. 2017 Jun;16(6):1064-1080. doi: 10.1074/mcp.M116.066662. Epub 2017 Apr 21. Mol Cell Proteomics. 2017. PMID: 28432195 Free PMC article. - SheddomeDB: the ectodomain shedding database for membrane-bound shed markers.
Tien WS, Chen JH, Wu KP. Tien WS, et al. BMC Bioinformatics. 2017 Mar 14;18(Suppl 3):42. doi: 10.1186/s12859-017-1465-7. BMC Bioinformatics. 2017. PMID: 28361715 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous