Histone acetylation and deacetylation in yeast - PubMed (original) (raw)
Review
doi: 10.1038/nrm1075.
Affiliations
- PMID: 12671650
- DOI: 10.1038/nrm1075
Review
Histone acetylation and deacetylation in yeast
Siavash K Kurdistani et al. Nat Rev Mol Cell Biol. 2003 Apr.
Abstract
Histone acetylation and deacetylation in the yeast Saccharomyces cerevisiae occur by targeting acetyltransferase and deacetylase enzymes to gene promoters and, in an untargeted and global manner, by affecting most nucleosomes. Recently, new roles for histone acetylation have been uncovered, not only in transcription but also in DNA replication, repair and heterochromatin formation. Interestingly, specific acetylatable lysines can function as binding sites for regulatory factors. Moreover, histone deacetylation is not only repressive but can be required for gene activity.
Similar articles
- Mapping global histone acetylation patterns to gene expression.
Kurdistani SK, Tavazoie S, Grunstein M. Kurdistani SK, et al. Cell. 2004 Jun 11;117(6):721-33. doi: 10.1016/j.cell.2004.05.023. Cell. 2004. PMID: 15186774 - Global histone acetylation and deacetylation in yeast.
Vogelauer M, Wu J, Suka N, Grunstein M. Vogelauer M, et al. Nature. 2000 Nov 23;408(6811):495-8. doi: 10.1038/35044127. Nature. 2000. PMID: 11100734 - Regulation of NuA4 histone acetyltransferase activity in transcription and DNA repair by phosphorylation of histone H4.
Utley RT, Lacoste N, Jobin-Robitaille O, Allard S, Côté J. Utley RT, et al. Mol Cell Biol. 2005 Sep;25(18):8179-90. doi: 10.1128/MCB.25.18.8179-8190.2005. Mol Cell Biol. 2005. PMID: 16135807 Free PMC article. - Roles of histone acetyltransferases and deacetylases in gene regulation.
Kuo MH, Allis CD. Kuo MH, et al. Bioessays. 1998 Aug;20(8):615-26. doi: 10.1002/(SICI)1521-1878(199808)20:8<615::AID-BIES4>3.0.CO;2-H. Bioessays. 1998. PMID: 9780836 Review. - Histone acetylation beyond promoters: long-range acetylation patterns in the chromatin world.
Forsberg EC, Bresnick EH. Forsberg EC, et al. Bioessays. 2001 Sep;23(9):820-30. doi: 10.1002/bies.1117. Bioessays. 2001. PMID: 11536294 Review.
Cited by
- Conserved signaling modules regulate filamentous growth in fungi: a model for eukaryotic cell differentiation.
Vandermeulen MD, Lorenz MC, Cullen PJ. Vandermeulen MD, et al. Genetics. 2024 Oct 7;228(2):iyae122. doi: 10.1093/genetics/iyae122. Genetics. 2024. PMID: 39239926 Review. - Unlocking the epigenetic symphony: histone acetylation's impact on neurobehavioral change in neurodegenerative disorders.
Basavarajappa BS, Subbanna S. Basavarajappa BS, et al. Epigenomics. 2024 Mar;16(5):331-358. doi: 10.2217/epi-2023-0428. Epub 2024 Feb 7. Epigenomics. 2024. PMID: 38321930 Review. - Transcriptomic analysis reveals hub genes and pathways in response to acetic acid stress in Kluyveromyces marxianus during high-temperature ethanol fermentation.
Li Y, Hou S, Ren Z, Fu S, Wang S, Chen M, Dang Y, Li H, Li S, Li P. Li Y, et al. Stress Biol. 2023 Jul 26;3(1):26. doi: 10.1007/s44154-023-00108-y. Stress Biol. 2023. PMID: 37676394 Free PMC article. - A secreted sirtuin from Campylobacter jejuni contributes to neutrophil activation and intestinal inflammation during infection.
Callahan SM, Hancock TJ, Doster RS, Parker CB, Wakim ME, Gaddy JA, Johnson JG. Callahan SM, et al. Sci Adv. 2023 Aug 11;9(32):eade2693. doi: 10.1126/sciadv.ade2693. Epub 2023 Aug 11. Sci Adv. 2023. PMID: 37566649 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases