Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression - PubMed (original) (raw)
. 2003 Jun 13;278(24):21592-600.
doi: 10.1074/jbc.M300931200. Epub 2003 Apr 7.
Affiliations
- PMID: 12682069
- DOI: 10.1074/jbc.M300931200
Free article
Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression
Michael McMahon et al. J Biol Chem. 2003.
Free article
Abstract
Keap1 is a negative regulator of Nrf2, a bZIP transcription factor that mediates adaptation to oxidative stress. Previous studies suggested this negative regulation is a consequence of Keap1 controlling the subcellular distribution of Nrf2. We now report that Keap1 also controls the total cellular level of Nrf2 protein. In the RL34 non-transformed rat liver cell line, Nrf2 was found to accumulate rapidly in response to oxidative stress caused by treatment with sulforaphane, and the accumulation resulted from inhibition of proteasomal-mediated degradation of the bZIP protein. By heterologously expressing in COS1 cells epitope-tagged Nrf2 and an Nrf2DeltaETGE mutant lacking the Keap1-binding site, in both the presence and absence of Keap1 we demonstrate that Nrf2 is subject to ubiquitination and proteasomal degradation independently of both Keap1 and the redox environment of the cell. In oxidatively stressed cells, this is the sole mechanism responsible for Nrf2 degradation. However, under homeostatic conditions Nrf2 is subject to a substantially more rapid mode of proteasomal degradation than it is in oxidatively stressed cells, and this rapid turnover of Nrf2 requires it to interact with Keap1. Within Nrf2, the N-terminal Neh2 domain is identified as the redox-sensitive degron. These data suggest that Keap1 negatively regulates Nrf2 by both enhancing its rate of proteasomal degradation and altering its subcellular distribution.
Similar articles
- Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex.
Zhang DD, Lo SC, Cross JV, Templeton DJ, Hannink M. Zhang DD, et al. Mol Cell Biol. 2004 Dec;24(24):10941-53. doi: 10.1128/MCB.24.24.10941-10953.2004. Mol Cell Biol. 2004. PMID: 15572695 Free PMC article. - Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress.
Zhang DD, Hannink M. Zhang DD, et al. Mol Cell Biol. 2003 Nov;23(22):8137-51. doi: 10.1128/MCB.23.22.8137-8151.2003. Mol Cell Biol. 2003. PMID: 14585973 Free PMC article. - Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2.
Kobayashi A, Kang MI, Okawa H, Ohtsuji M, Zenke Y, Chiba T, Igarashi K, Yamamoto M. Kobayashi A, et al. Mol Cell Biol. 2004 Aug;24(16):7130-9. doi: 10.1128/MCB.24.16.7130-7139.2004. Mol Cell Biol. 2004. PMID: 15282312 Free PMC article. - Evolutionary conserved N-terminal domain of Nrf2 is essential for the Keap1-mediated degradation of the protein by proteasome.
Katoh Y, Iida K, Kang MI, Kobayashi A, Mizukami M, Tong KI, McMahon M, Hayes JD, Itoh K, Yamamoto M. Katoh Y, et al. Arch Biochem Biophys. 2005 Jan 15;433(2):342-50. doi: 10.1016/j.abb.2004.10.012. Arch Biochem Biophys. 2005. PMID: 15581590 Review. - Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles.
Itoh K, Tong KI, Yamamoto M. Itoh K, et al. Free Radic Biol Med. 2004 May 15;36(10):1208-13. doi: 10.1016/j.freeradbiomed.2004.02.075. Free Radic Biol Med. 2004. PMID: 15110385 Review.
Cited by
- A delayed antioxidant response in heat-stressed cells expressing a non-DNA binding HSF1 mutant.
Hensen SM, Heldens L, van Genesen ST, Pruijn GJ, Lubsen NH. Hensen SM, et al. Cell Stress Chaperones. 2013 Jul;18(4):455-73. doi: 10.1007/s12192-012-0400-0. Epub 2013 Jan 16. Cell Stress Chaperones. 2013. PMID: 23321918 Free PMC article. - Sulforaphane suppresses the viability and metastasis, and promotes the apoptosis of bladder cancer cells by inhibiting the expression of FAT‑1.
Wang F, Liu P, An H, Zhang Y. Wang F, et al. Int J Mol Med. 2020 Sep;46(3):1085-1095. doi: 10.3892/ijmm.2020.4665. Epub 2020 Jul 2. Int J Mol Med. 2020. PMID: 32705150 Free PMC article. - Trash Talk: Mammalian Proteasome Regulation at the Transcriptional Level.
Kamber Kaya HE, Radhakrishnan SK. Kamber Kaya HE, et al. Trends Genet. 2021 Feb;37(2):160-173. doi: 10.1016/j.tig.2020.09.005. Epub 2020 Sep 25. Trends Genet. 2021. PMID: 32988635 Free PMC article. Review. - Targeting the NRF2 pathway for disease modification in neurodegenerative diseases: mechanisms and therapeutic implications.
Mayer C, Riera-Ponsati L, Kauppinen S, Klitgaard H, Erler JT, Hansen SN. Mayer C, et al. Front Pharmacol. 2024 Jul 25;15:1437939. doi: 10.3389/fphar.2024.1437939. eCollection 2024. Front Pharmacol. 2024. PMID: 39119604 Free PMC article. Review. - Structural basis of Keap1 interactions with Nrf2.
Canning P, Sorrell FJ, Bullock AN. Canning P, et al. Free Radic Biol Med. 2015 Nov;88(Pt B):101-107. doi: 10.1016/j.freeradbiomed.2015.05.034. Epub 2015 Jun 7. Free Radic Biol Med. 2015. PMID: 26057936 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases