Multiple inverted DNA repeats of Bacteroides fragilis that control polysaccharide antigenic variation are similar to the hin region inverted repeats of Salmonella typhimurium - PubMed (original) (raw)
. 2003 Apr;149(Pt 4):915-924.
doi: 10.1099/mic.0.26166-0.
Affiliations
- PMID: 12686634
- DOI: 10.1099/mic.0.26166-0
Free article
Multiple inverted DNA repeats of Bacteroides fragilis that control polysaccharide antigenic variation are similar to the hin region inverted repeats of Salmonella typhimurium
Sheila Patrick et al. Microbiology (Reading). 2003 Apr.
Free article
Abstract
The important opportunistic pathogen Bacteroides fragilis is a strictly anaerobic Gram-negative bacterium and a member of the normal resident human gastrointestinal microbiota. Our earlier studies indicated that there is considerable within-strain variation in polysaccharide expression, as detected by mAb labelling. Analysis of the genome sequence has revealed multiple invertible DNA regions, designated fragilis invertible (fin) regions, seven of which are upstream of polysaccharide biosynthesis loci and are approximately 226 bp in size. Using orientation-specific PCR primers and sequence analysis with populations enriched for one antigenic type, two of these invertible regions were assigned to heteropolymeric polysaccharides with different sizes of repeating units, as determined by PAGE pattern. The implication of these findings is that inversion of the fin regions switches biosynthesis of these polysaccharides off and on. The invertible regions are bound by inverted repeats of 30 or 32 bp with striking similarity to the Salmonella typhimurium H flagellar antigen inversion cross-over (hix) recombination sites of the invertible hin region. It has been demonstrated that a plasmid-encoded Hin invertase homologue (FinB), present in B. fragilis NCTC 9343, binds specifically to the invertible regions and the recombination sites have been designated as fragilis inversion cross-over (fix) sites.
Similar articles
- Extensive DNA inversions in the B. fragilis genome control variable gene expression.
Cerdeño-Tárraga AM, Patrick S, Crossman LC, Blakely G, Abratt V, Lennard N, Poxton I, Duerden B, Harris B, Quail MA, Barron A, Clark L, Corton C, Doggett J, Holden MT, Larke N, Line A, Lord A, Norbertczak H, Ormond D, Price C, Rabbinowitsch E, Woodward J, Barrell B, Parkhill J. Cerdeño-Tárraga AM, et al. Science. 2005 Mar 4;307(5714):1463-5. doi: 10.1126/science.1107008. Science. 2005. PMID: 15746427 - Identification of the site-specific DNA invertase responsible for the phase variation of SusC/SusD family outer membrane proteins in Bacteroides fragilis.
Nakayama-Imaohji H, Hirakawa H, Ichimura M, Wakimoto S, Kuhara S, Hayashi T, Kuwahara T. Nakayama-Imaohji H, et al. J Bacteriol. 2009 Oct;191(19):6003-11. doi: 10.1128/JB.00687-09. Epub 2009 Jul 31. J Bacteriol. 2009. PMID: 19648246 Free PMC article. - Two DNA invertases contribute to flagellar phase variation in Salmonella enterica serovar Typhimurium strain LT2.
Kutsukake K, Nakashima H, Tominaga A, Abo T. Kutsukake K, et al. J Bacteriol. 2006 Feb;188(3):950-7. doi: 10.1128/JB.188.3.950-957.2006. J Bacteriol. 2006. PMID: 16428399 Free PMC article. - A tale of two habitats: Bacteroides fragilis, a lethal pathogen and resident in the human gastrointestinal microbiome.
Patrick S. Patrick S. Microbiology (Reading). 2022 Apr;168(4). doi: 10.1099/mic.0.001156. Microbiology (Reading). 2022. PMID: 35404220 Review. - Structure and function of the shufflon in plasmid R64.
Gyohda A, Furuya N, Ishiwa A, Zhu S, Komano T. Gyohda A, et al. Adv Biophys. 2004;38:183-213. Adv Biophys. 2004. PMID: 15493334 Review.
Cited by
- Mpi recombinase globally modulates the surface architecture of a human commensal bacterium.
Coyne MJ, Weinacht KG, Krinos CM, Comstock LE. Coyne MJ, et al. Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10446-51. doi: 10.1073/pnas.1832655100. Epub 2003 Aug 12. Proc Natl Acad Sci U S A. 2003. PMID: 12915735 Free PMC article. - Phase-variable expression of a family of glycoproteins imparts a dynamic surface to a symbiont in its human intestinal ecosystem.
Fletcher CM, Coyne MJ, Bentley DL, Villa OF, Comstock LE. Fletcher CM, et al. Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2413-8. doi: 10.1073/pnas.0608797104. Epub 2007 Feb 6. Proc Natl Acad Sci U S A. 2007. PMID: 17284602 Free PMC article. - In Silico Study of Cell Surface Structures of Parabacteroides distasonis Involved in Its Maintenance within the Gut Microbiota.
Chamarande J, Cunat L, Alauzet C, Cailliez-Grimal C. Chamarande J, et al. Int J Mol Sci. 2022 Aug 20;23(16):9411. doi: 10.3390/ijms23169411. Int J Mol Sci. 2022. PMID: 36012685 Free PMC article. - Genomic analysis of Caldalkalibacillus thermarum TA2.A1 reveals aerobic alkaliphilic metabolism and evolutionary hallmarks linking alkaliphilic bacteria and plant life.
de Jong SI, van den Broek MA, Merkel AY, de la Torre Cortes P, Kalamorz F, Cook GM, van Loosdrecht MCM, McMillan DGG. de Jong SI, et al. Extremophiles. 2020 Nov;24(6):923-935. doi: 10.1007/s00792-020-01205-w. Epub 2020 Oct 8. Extremophiles. 2020. PMID: 33030592 Free PMC article. - Twenty years of bacterial genome sequencing.
Loman NJ, Pallen MJ. Loman NJ, et al. Nat Rev Microbiol. 2015 Dec;13(12):787-94. doi: 10.1038/nrmicro3565. Epub 2015 Nov 9. Nat Rev Microbiol. 2015. PMID: 26548914 Review.