Acquired tolerance to temperature extremes - PubMed (original) (raw)
Review
Acquired tolerance to temperature extremes
Dong-Yul Sung et al. Trends Plant Sci. 2003 Apr.
Free article
Abstract
Acquired tolerance to temperature stresses is a major protective mechanism. Recent advances have revealed key components of stress signal transduction pathways that trigger enhanced tolerance, and several determinants of acquired tolerance have been identified. Although high and low temperature stresses impose different metabolic and physical challenges, acquired tolerance appears to involve general as well as stress-specific components. Transcriptome studies and other genomic-scale approaches have accelerated the pace of gene discovery, and will be invaluable in efforts to integrate all the different protective and repair mechanisms that function in concert to confer acquired tolerance.
Similar articles
- Metabolomics of temperature stress.
Guy C, Kaplan F, Kopka J, Selbig J, Hincha DK. Guy C, et al. Physiol Plant. 2008 Feb;132(2):220-35. doi: 10.1111/j.1399-3054.2007.00999.x. Physiol Plant. 2008. PMID: 18251863 Review. - From freezing to scorching, transcriptional responses to temperature variations in plants.
Hua J. Hua J. Curr Opin Plant Biol. 2009 Oct;12(5):568-73. doi: 10.1016/j.pbi.2009.07.012. Epub 2009 Aug 26. Curr Opin Plant Biol. 2009. PMID: 19716335 Review. - [Transcriptional regulatory networks in responses to water and temperature stresses in plants].
Sakuma Y, Yamaguchi-Shinozaki K. Sakuma Y, et al. Tanpakushitsu Kakusan Koso. 2007 May;52(6 Suppl):543-9. Tanpakushitsu Kakusan Koso. 2007. PMID: 17566352 Review. Japanese. No abstract available. - Achievements and challenges in understanding plant abiotic stress responses and tolerance.
Qin F, Shinozaki K, Yamaguchi-Shinozaki K. Qin F, et al. Plant Cell Physiol. 2011 Sep;52(9):1569-82. doi: 10.1093/pcp/pcr106. Epub 2011 Aug 9. Plant Cell Physiol. 2011. PMID: 21828105 Review. - [Metabolic engineering of trienoic fatty acids and stress tolerance in higher plants].
Matsuda O, Kai H, Yara A, Iba K. Matsuda O, et al. Tanpakushitsu Kakusan Koso. 2007 May;52(6 Suppl):536-42. Tanpakushitsu Kakusan Koso. 2007. PMID: 17566351 Review. Japanese. No abstract available.
Cited by
- Cold-active winter rye glucanases with ice-binding capacity.
Yaish MW, Doxey AC, McConkey BJ, Moffatt BA, Griffith M. Yaish MW, et al. Plant Physiol. 2006 Aug;141(4):1459-72. doi: 10.1104/pp.106.081935. Epub 2006 Jun 30. Plant Physiol. 2006. PMID: 16815958 Free PMC article. - Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN.
Ait Barka E, Nowak J, Clément C. Ait Barka E, et al. Appl Environ Microbiol. 2006 Nov;72(11):7246-52. doi: 10.1128/AEM.01047-06. Epub 2006 Sep 15. Appl Environ Microbiol. 2006. PMID: 16980419 Free PMC article. - Sodium hydrosulfide induces systemic thermotolerance to strawberry plants through transcriptional regulation of heat shock proteins and aquaporin.
Christou A, Filippou P, Manganaris GA, Fotopoulos V. Christou A, et al. BMC Plant Biol. 2014 Feb 5;14:42. doi: 10.1186/1471-2229-14-42. BMC Plant Biol. 2014. PMID: 24499299 Free PMC article. - Genome-wide identification of heat shock proteins (Hsps) and Hsp interactors in rice: Hsp70s as a case study.
Wang Y, Lin S, Song Q, Li K, Tao H, Huang J, Chen X, Que S, He H. Wang Y, et al. BMC Genomics. 2014 May 7;15(1):344. doi: 10.1186/1471-2164-15-344. BMC Genomics. 2014. PMID: 24884676 Free PMC article. - Actin Depolymerization Factor ADF1 Regulated by MYB30 Plays an Important Role in Plant Thermal Adaptation.
Wang L, Cheng J, Bi S, Wang J, Cheng X, Liu S, Gao Y, Lan Q, Shi X, Wang Y, Zhao X, Qi X, Xu S, Wang C. Wang L, et al. Int J Mol Sci. 2023 Mar 16;24(6):5675. doi: 10.3390/ijms24065675. Int J Mol Sci. 2023. PMID: 36982748 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources