The generation of 5'-deoxyadenosyl radicals by adenosylmethionine-dependent radical enzymes - PubMed (original) (raw)
Review
The generation of 5'-deoxyadenosyl radicals by adenosylmethionine-dependent radical enzymes
Joseph T Jarrett. Curr Opin Chem Biol. 2003 Apr.
Abstract
Adenosylmethionine-dependent radical enzymes provide a novel mechanism for generating the highly oxidizing 5'-deoxyadenosyl radical in an anaerobic reducing environment. Recent studies suggest a unique covalent interaction between adenosylmethionine and a catalytic iron-sulfur cluster that may promote inner-sphere electron transfer to the sulfonium, resulting in the reductive cleavage of a C[bond]S and the generation of a 5'-deoxyadenosyl radical. The utilization of this radical as a catalytic and stoichiometric oxidant in many different enzyme reactions reflects the broad diversity of radical enzymes throughout biology.
Similar articles
- Adenosylmethionine as a source of 5'-deoxyadenosyl radicals.
Fontecave M, Mulliez E, Ollagnier-de-Choudens S. Fontecave M, et al. Curr Opin Chem Biol. 2001 Oct;5(5):506-11. doi: 10.1016/s1367-5931(00)00237-4. Curr Opin Chem Biol. 2001. PMID: 11578923 Review. - A dehydroalanyl residue can capture the 5'-deoxyadenosyl radical generated from S-adenosylmethionine by pyruvate formate-lyase-activating enzyme.
Wagner AF, Demand J, Schilling G, Pils T, Knappe J. Wagner AF, et al. Biochem Biophys Res Commun. 1999 Jan 19;254(2):306-10. doi: 10.1006/bbrc.1998.9931. Biochem Biophys Res Commun. 1999. PMID: 9918833 - Pyruvate formate-lyase activating enzyme: elucidation of a novel mechanism for glycyl radical formation.
Buis JM, Broderick JB. Buis JM, et al. Arch Biochem Biophys. 2005 Jan 1;433(1):288-96. doi: 10.1016/j.abb.2004.09.028. Arch Biochem Biophys. 2005. PMID: 15581584 Review. - Radical mechanisms in adenosylmethionine- and adenosylcobalamin-dependent enzymatic reactions.
Frey PA, Reed GH. Frey PA, et al. Arch Biochem Biophys. 2000 Oct 1;382(1):6-14. doi: 10.1006/abbi.2000.2010. Arch Biochem Biophys. 2000. PMID: 11051091 Review. - Substrate-Dependent Cleavage Site Selection by Unconventional Radical S-Adenosylmethionine Enzymes in Diphthamide Biosynthesis.
Dong M, Horitani M, Dzikovski B, Freed JH, Ealick SE, Hoffman BM, Lin H. Dong M, et al. J Am Chem Soc. 2017 Apr 26;139(16):5680-5683. doi: 10.1021/jacs.7b01712. Epub 2017 Apr 13. J Am Chem Soc. 2017. PMID: 28383907 Free PMC article.
Cited by
- NifB-dependent in vitro synthesis of the iron-molybdenum cofactor of nitrogenase.
Curatti L, Ludden PW, Rubio LM. Curatti L, et al. Proc Natl Acad Sci U S A. 2006 Apr 4;103(14):5297-301. doi: 10.1073/pnas.0601115103. Epub 2006 Mar 27. Proc Natl Acad Sci U S A. 2006. PMID: 16567617 Free PMC article. - A comparative genomics study of genetic products potentially encoding ladderane lipid biosynthesis.
Rattray JE, Strous M, Op den Camp HJ, Schouten S, Jetten MS, Damsté JS. Rattray JE, et al. Biol Direct. 2009 Feb 16;4:8. doi: 10.1186/1745-6150-4-8. Biol Direct. 2009. PMID: 19220888 Free PMC article. - Crystal structure of the S-adenosylmethionine-dependent enzyme MoaA and its implications for molybdenum cofactor deficiency in humans.
Hänzelmann P, Schindelin H. Hänzelmann P, et al. Proc Natl Acad Sci U S A. 2004 Aug 31;101(35):12870-5. doi: 10.1073/pnas.0404624101. Epub 2004 Aug 18. Proc Natl Acad Sci U S A. 2004. PMID: 15317939 Free PMC article. - Structural insights into putative molybdenum cofactor biosynthesis protein C (MoaC2) from Mycobacterium tuberculosis H37Rv.
Srivastava VK, Srivastava S, Arora A, Pratap JV. Srivastava VK, et al. PLoS One. 2013;8(3):e58333. doi: 10.1371/journal.pone.0058333. Epub 2013 Mar 19. PLoS One. 2013. PMID: 23526978 Free PMC article. - Chemistry and Biochemistry of Sulfur Natural Compounds: Key Intermediates of Metabolism and Redox Biology.
Francioso A, Baseggio Conrado A, Mosca L, Fontana M. Francioso A, et al. Oxid Med Cell Longev. 2020 Sep 29;2020:8294158. doi: 10.1155/2020/8294158. eCollection 2020. Oxid Med Cell Longev. 2020. PMID: 33062147 Free PMC article. Review.