Shunting inhibition modulates neuronal gain during synaptic excitation - PubMed (original) (raw)
Shunting inhibition modulates neuronal gain during synaptic excitation
Simon J Mitchell et al. Neuron. 2003.
Free article
Abstract
Neuronal gain control is important for processing information in the brain. Shunting inhibition is not thought to control gain since it shifts input-output relationships during tonic excitation rather than changing their slope. Here we show that tonic inhibition reduces the gain and shifts the offset of cerebellar granule cell input-output relationships during frequency-dependent excitation with synaptic conductance waveforms. Shunting inhibition scales subthreshold voltage, increasing the excitation frequency required to attain a particular firing rate. This reduces gain because frequency-dependent increases in input variability, which couple mean subthreshold voltage to firing rate, boost voltage fluctuations during inhibition. Moreover, synaptic time course and the number of inputs also influence gain changes by setting excitation variability. Our results suggest that shunting inhibition can multiplicatively scale rate-coded information in neurons with high-variability synaptic inputs.
Similar articles
- Gain control by concerted changes in I(A) and I(H) conductances.
Burdakov D. Burdakov D. Neural Comput. 2005 May;17(5):991-995. doi: 10.1162/0899766053491841. Neural Comput. 2005. PMID: 15881793 Free PMC article. - Neuronal integration of synaptic input in the fluctuation-driven regime.
Kuhn A, Aertsen A, Rotter S. Kuhn A, et al. J Neurosci. 2004 Mar 10;24(10):2345-56. doi: 10.1523/JNEUROSCI.3349-03.2004. J Neurosci. 2004. PMID: 15014109 Free PMC article. - Gain modulation from background synaptic input.
Chance FS, Abbott LF, Reyes AD. Chance FS, et al. Neuron. 2002 Aug 15;35(4):773-82. doi: 10.1016/s0896-6273(02)00820-6. Neuron. 2002. PMID: 12194875 - A new mechanism for neuronal gain control (or how the gain in brains has mainly been explained).
Priebe NJ, Ferster D. Priebe NJ, et al. Neuron. 2002 Aug 15;35(4):602-4. doi: 10.1016/s0896-6273(02)00829-2. Neuron. 2002. PMID: 12194862 Review. - Drivers and modulators from push-pull and balanced synaptic input.
Abbott LF, Chance FS. Abbott LF, et al. Prog Brain Res. 2005;149:147-55. doi: 10.1016/S0079-6123(05)49011-1. Prog Brain Res. 2005. PMID: 16226582 Review.
Cited by
- Abrupt and spontaneous strategy switches emerge in simple regularised neural networks.
Löwe AT, Touzo L, Muhle-Karbe PS, Saxe AM, Summerfield C, Schuck NW. Löwe AT, et al. PLoS Comput Biol. 2024 Oct 21;20(10):e1012505. doi: 10.1371/journal.pcbi.1012505. eCollection 2024 Oct. PLoS Comput Biol. 2024. PMID: 39432516 Free PMC article. - Regulation of Cortical Dynamic Range by Background Synaptic Noise and Feedforward Inhibition.
Khubieh A, Ratté S, Lankarany M, Prescott SA. Khubieh A, et al. Cereb Cortex. 2016 Aug;26(8):3357-69. doi: 10.1093/cercor/bhv157. Epub 2015 Jul 24. Cereb Cortex. 2016. PMID: 26209846 Free PMC article. - Translation information processing is regulated by protein kinase C-dependent mechanism in Purkinje cells in murine posterior vermis.
Hernández RG, De Zeeuw CI, Zhang R, Yakusheva TA, Blazquez PM. Hernández RG, et al. Proc Natl Acad Sci U S A. 2020 Jul 21;117(29):17348-17358. doi: 10.1073/pnas.2002177117. Epub 2020 Jul 7. Proc Natl Acad Sci U S A. 2020. PMID: 32636261 Free PMC article. - GABA as a rising gliotransmitter.
Yoon BE, Lee CJ. Yoon BE, et al. Front Neural Circuits. 2014 Dec 17;8:141. doi: 10.3389/fncir.2014.00141. eCollection 2014. Front Neural Circuits. 2014. PMID: 25565970 Free PMC article. Review. - Rapid vesicular release, quantal variability, and spillover contribute to the precision and reliability of transmission at a glomerular synapse.
Sargent PB, Saviane C, Nielsen TA, DiGregorio DA, Silver RA. Sargent PB, et al. J Neurosci. 2005 Sep 7;25(36):8173-87. doi: 10.1523/JNEUROSCI.2051-05.2005. J Neurosci. 2005. PMID: 16148225 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources