Functional-anatomic correlates of control processes in memory - PubMed (original) (raw)
Review
Functional-anatomic correlates of control processes in memory
Randy L Buckner. J Neurosci. 2003.
No abstract available
Figures
Figure 1.
Frontal regions activated during memory retrieval show a roughly posterior to anterior gradient of functional specialization. Posterior regions (red) tend to modulate on the basis of retrieved content, and more anterior regions (blue) modulate based on the level and type of controlled processing demand. Frontal-polar regions(green) exhibit complex properties that are content independent and associated with high-level task goals (see text).
Figure 2.
During retrieval of specific episodes, frontal-polar regions demonstrate prolonged signal change, suggesting a contribution to temporally extended processes that establish a task set or retrieval mode. A, The time course of posterior and anterior frontal regions is shown from a functional magnetic resonance imaging study of memory retrieval. Note that the timescale(in seconds) reflects the temporal blurring of the hemodynamic response (Logethetis, 2003). Adapted from Schacter et al.(1997).B, The time course of evoked response potentials measured over anterior frontal scalp sites. A slowly evolving change in the waveform is noted during the periods of remembering that extends across individual items. Adapted from Düzel et al. (1999).
Figure 3.
Under-recruitment and nonselective recruitment of frontal regions in older adults are illustrated. A, Anterior left frontal regions are under-recruited in older adults as compared with younger adults during intentional memorization. B, Older adults, paradoxically, show increased activation in regions not typically associated with processing in younger adults (nonselective recruitment). In this example, young adults show selective recruitment of left posterior frontal regions during word encoding. Older adults show greater relative activation of the homologous right frontal region. Adapted from Logan et al (2002). See Cabeza (2002) and Reuter-Lorenz (2002) for additional examples.
Similar articles
- Inferior temporal, prefrontal, and hippocampal contributions to visual working memory maintenance and associative memory retrieval.
Ranganath C, Cohen MX, Dam C, D'Esposito M. Ranganath C, et al. J Neurosci. 2004 Apr 21;24(16):3917-25. doi: 10.1523/JNEUROSCI.5053-03.2004. J Neurosci. 2004. PMID: 15102907 Free PMC article. - Ventrolateral prefrontal cortex and tactile memory disambiguation in the human brain.
Kostopoulos P, Albanese MC, Petrides M. Kostopoulos P, et al. Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10223-8. doi: 10.1073/pnas.0700253104. Epub 2007 Jun 5. Proc Natl Acad Sci U S A. 2007. PMID: 17551017 Free PMC article. - Prefrontal cortex and working memory processes.
Funahashi S. Funahashi S. Neuroscience. 2006 Apr 28;139(1):251-61. doi: 10.1016/j.neuroscience.2005.07.003. Epub 2005 Dec 1. Neuroscience. 2006. PMID: 16325345 Review. - Working memory and prefrontal cortex.
Funahashi S, Kubota K. Funahashi S, et al. Neurosci Res. 1994 Nov;21(1):1-11. doi: 10.1016/0168-0102(94)90063-9. Neurosci Res. 1994. PMID: 7708289 Review. - Specialization in the left prefrontal cortex for sentence comprehension.
Hashimoto R, Sakai KL. Hashimoto R, et al. Neuron. 2002 Aug 1;35(3):589-97. doi: 10.1016/s0896-6273(02)00788-2. Neuron. 2002. PMID: 12165479
Cited by
- Human intracranial high-frequency activity maps episodic memory formation in space and time.
Burke JF, Long NM, Zaghloul KA, Sharan AD, Sperling MR, Kahana MJ. Burke JF, et al. Neuroimage. 2014 Jan 15;85 Pt 2(0 2):834-43. doi: 10.1016/j.neuroimage.2013.06.067. Epub 2013 Jul 1. Neuroimage. 2014. PMID: 23827329 Free PMC article. - Episodic memory in former professional football players with a history of concussion: an event-related functional neuroimaging study.
Ford JH, Giovanello KS, Guskiewicz KM. Ford JH, et al. J Neurotrauma. 2013 Oct 15;30(20):1683-701. doi: 10.1089/neu.2012.2535. Epub 2013 Aug 24. J Neurotrauma. 2013. PMID: 23679098 Free PMC article. - Abstract rule learning: the differential effects of lesions in frontal cortex.
Kayser AS, D'Esposito M. Kayser AS, et al. Cereb Cortex. 2013 Jan;23(1):230-40. doi: 10.1093/cercor/bhs013. Epub 2012 Jan 31. Cereb Cortex. 2013. PMID: 22298728 Free PMC article. - Shrinkage of the entorhinal cortex over five years predicts memory performance in healthy adults.
Rodrigue KM, Raz N. Rodrigue KM, et al. J Neurosci. 2004 Jan 28;24(4):956-63. doi: 10.1523/JNEUROSCI.4166-03.2004. J Neurosci. 2004. PMID: 14749440 Free PMC article. - Prefrontal contributions to domain-general executive control processes during temporal context retrieval.
Rajah MN, Ames B, D'Esposito M. Rajah MN, et al. Neuropsychologia. 2008 Mar 7;46(4):1088-103. doi: 10.1016/j.neuropsychologia.2007.10.023. Epub 2007 Nov 12. Neuropsychologia. 2008. PMID: 18155254 Free PMC article.
References
- Arnsten AFT, Cai JX, Murphy BL, Goldman-Rakic PS ( 1994) Dopamine D-1 receptor mechanisms in the cognitive performance of young-adult and aged monkeys. Psychopharmacology 116: 143–151. - PubMed
- Balota DA, Dolan PO, Duchek JM ( 2000) Memory changes in healthy older adults. In: The Oxford handbook of memory (Tulving E, Craik FIM, eds), pp 395–410. New York: Oxford UP.
- Braver TS, Bongiolatti SR ( 2002) The role of frontopolar cortex in subgoal processing during working memory. NeuroImage 15: 523–536. - PubMed
- Braver TS, Barch DM, Keys BA, Carter CS, Cohen JD, Kaye JA, Janowsky JS, Taylor SF, Yesavage JA, Munenthaler MS, Jagust WJ, Reed BR ( 2002) Context processing in older adults: evidence for a theory relating cognitive control to neurobiology in healthy aging. J Exp Psychol 130: 746–763. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical