Transmission dynamics of the etiological agent of SARS in Hong Kong: impact of public health interventions - PubMed (original) (raw)
. 2003 Jun 20;300(5627):1961-6.
doi: 10.1126/science.1086478. Epub 2003 May 23.
Christophe Fraser, Christl A Donnelly, Azra C Ghani, Laith J Abu-Raddad, Anthony J Hedley, Gabriel M Leung, Lai-Ming Ho, Tai-Hing Lam, Thuan Q Thach, Patsy Chau, King-Pan Chan, Su-Vui Lo, Pak-Yin Leung, Thomas Tsang, William Ho, Koon-Hung Lee, Edith M C Lau, Neil M Ferguson, Roy M Anderson
Affiliations
- PMID: 12766206
- DOI: 10.1126/science.1086478
Transmission dynamics of the etiological agent of SARS in Hong Kong: impact of public health interventions
Steven Riley et al. Science. 2003.
Abstract
We present an analysis of the first 10 weeks of the severe acute respiratory syndrome (SARS) epidemic in Hong Kong. The epidemic to date has been characterized by two large clusters-initiated by two separate "super-spread" events (SSEs)-and by ongoing community transmission. By fitting a stochastic model to data on 1512 cases, including these clusters, we show that the etiological agent of SARS is moderately transmissible. Excluding SSEs, we estimate that 2.7 secondary infections were generated per case on average at the start of the epidemic, with a substantial contribution from hospital transmission. Transmission rates fell during the epidemic, primarily as a result of reductions in population contact rates and improved hospital infection control, but also because of more rapid hospital attendance by symptomatic individuals. As a result, the epidemic is now in decline, although continued vigilance is necessary for this to be maintained. Restrictions on longer range population movement are shown to be a potentially useful additional control measure in some contexts. We estimate that most currently infected persons are now hospitalized, which highlights the importance of control of nosocomial transmission.
Comment in
- Epidemiology. Modeling the SARS epidemic.
Dye C, Gay N. Dye C, et al. Science. 2003 Jun 20;300(5627):1884-5. doi: 10.1126/science.1086925. Epub 2003 May 23. Science. 2003. PMID: 12766208 No abstract available.
Similar articles
- Epidemiology. Modeling the SARS epidemic.
Dye C, Gay N. Dye C, et al. Science. 2003 Jun 20;300(5627):1884-5. doi: 10.1126/science.1086925. Epub 2003 May 23. Science. 2003. PMID: 12766208 No abstract available. - Transmission dynamics and control of severe acute respiratory syndrome.
Lipsitch M, Cohen T, Cooper B, Robins JM, Ma S, James L, Gopalakrishna G, Chew SK, Tan CC, Samore MH, Fisman D, Murray M. Lipsitch M, et al. Science. 2003 Jun 20;300(5627):1966-70. doi: 10.1126/science.1086616. Epub 2003 May 23. Science. 2003. PMID: 12766207 Free PMC article. - Monitoring the severe acute respiratory syndrome epidemic and assessing effectiveness of interventions in Hong Kong Special Administrative Region.
Chau PH, Yip PS. Chau PH, et al. J Epidemiol Community Health. 2003 Oct;57(10):766-9. doi: 10.1136/jech.57.10.766. J Epidemiol Community Health. 2003. PMID: 14573569 Free PMC article. - Strategies adopted and lessons learnt during the severe acute respiratory syndrome crisis in Singapore.
SARS Investigation Team from DMERI; SGH. SARS Investigation Team from DMERI, et al. Rev Med Virol. 2005 Jan-Feb;15(1):57-70. doi: 10.1002/rmv.458. Rev Med Virol. 2005. PMID: 15565739 Review. - [Importance of nosocomial transmission on severe acute respiratory syndrome and its prevention].
Vaqué-Rafart J, Armadans-Gil L. Vaqué-Rafart J, et al. Enferm Infecc Microbiol Clin. 2004 Feb;22(2):102-5. doi: 10.1016/s0213-005x(04)73043-8. Enferm Infecc Microbiol Clin. 2004. PMID: 14756992 Free PMC article. Review. Spanish. No abstract available.
Cited by
- Modelling aerosol transport and virus exposure with numerical simulations in relation to SARS-CoV-2 transmission by inhalation indoors.
Vuorinen V, Aarnio M, Alava M, Alopaeus V, Atanasova N, Auvinen M, Balasubramanian N, Bordbar H, Erästö P, Grande R, Hayward N, Hellsten A, Hostikka S, Hokkanen J, Kaario O, Karvinen A, Kivistö I, Korhonen M, Kosonen R, Kuusela J, Lestinen S, Laurila E, Nieminen HJ, Peltonen P, Pokki J, Puisto A, Råback P, Salmenjoki H, Sironen T, Österberg M. Vuorinen V, et al. Saf Sci. 2020 Oct;130:104866. doi: 10.1016/j.ssci.2020.104866. Epub 2020 Jun 11. Saf Sci. 2020. PMID: 32834511 Free PMC article. - Overdispersion in COVID-19 increases the effectiveness of limiting nonrepetitive contacts for transmission control.
Sneppen K, Nielsen BF, Taylor RJ, Simonsen L. Sneppen K, et al. Proc Natl Acad Sci U S A. 2021 Apr 6;118(14):e2016623118. doi: 10.1073/pnas.2016623118. Proc Natl Acad Sci U S A. 2021. PMID: 33741734 Free PMC article. - Impact of human mobility on the periodicities and mechanisms underlying measles dynamics.
Marguta R, Parisi A. Marguta R, et al. J R Soc Interface. 2015 Mar 6;12(104):20141317. doi: 10.1098/rsif.2014.1317. J R Soc Interface. 2015. PMID: 25673302 Free PMC article. - Spatial evolutionary epidemiology of spreading epidemics.
Lion S, Gandon S. Lion S, et al. Proc Biol Sci. 2016 Oct 26;283(1841):20161170. doi: 10.1098/rspb.2016.1170. Proc Biol Sci. 2016. PMID: 27798295 Free PMC article. - Noise, nonlinearity and seasonality: the epidemics of whooping cough revisited.
Nguyen HT, Rohani P. Nguyen HT, et al. J R Soc Interface. 2008 Apr 6;5(21):403-13. doi: 10.1098/rsif.2007.1168. J R Soc Interface. 2008. PMID: 17878136 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous