Caveolae/raft-dependent endocytosis - PubMed (original) (raw)

Review

Caveolae/raft-dependent endocytosis

Ivan R Nabi et al. J Cell Biol. 2003.

Abstract

Although caveolae are well-characterized subdomains of glycolipid rafts, their distinctive morphology and association with caveolins has led to their internalization being considered different from that of rafts. In this review, we propose that caveolae and rafts are internalized via a common pathway, caveolae/raft-dependent endocytosis, defined by its clathrin independence, dynamin dependence, and sensitivity to cholesterol depletion. The regulatory role of caveolin-1 and ligand sorting in this complex endocytic pathway are specifically addressed.

PubMed Disclaimer

Figures

Figure 1.

Figure 1.

Expression of dynaminK44A or caveolin-1 results in the formation of morphologically equivalent caveolar invaginations. v-abl-transformed NIH-3T3 cells that exhibit minimal caveolin expression and few cell surface caveolae were infected with adenoviruses coding for either the dynamin K44A mutant (dynK44A) or caveolin-1 (cav-1), and the cells were then processed for electron microscopy. For details, see Le et al., 2002.

Figure 2.

Figure 2.

Caveolae/raft-mediated endocytosis. (A) The cholesterol-dependent invagination of glycolipid rafts occurs independently of caveolin-1 expression and results in the formation of caveolar invaginations that remain only transiently associated with the plasma membrane. Caveolin-1 is a negative regulator of the budding of caveolar invaginations, and caveolin-1–expressing stable cell surface caveolae can become endocytosis competent aftert specific signaling events. Caveolar invaginations bud in a dynamin-dependent manner from the plasma membrane to form caveolar vesicles. (B) COP- dependent pathways target CTX (blue) and SV40 (green) via the caveosome for delivery to the Golgi and ER, respectively, whereas AMF (red) is targeted via a distinct pathway that is apparently direct to the ER. CTX and SV40 could alternatively be targeted to a common caveosome (gray) and subsequently segregated for delivery to the Golgi and ER, respectively (dashed lines).

Similar articles

Cited by

References

    1. Abrami, L., S. Liu, P. Cosson, S.H. Leppla, and F.G. van der Goot. 2003. Anthrax toxin triggers endocytosis of its receptor via a lipid raft-mediated clathrin-dependent process. J. Cell Biol. 160:321–328. - PMC - PubMed
    1. Anderson, R.G. 1998. The caveolae membrane system. Annu. Rev. Biochem. 67:199–225. - PubMed
    1. Bendayan, M., and E.A. Rasio. 1996. Transport of insulin and albumin by the microvascular endothelium of the rete mirabile. J. Cell Sci. 109:1857–1864. - PubMed
    1. Benlimame, N., P.U. Le, and I.R. Nabi. 1998. Localization of autocrine motility factor receptor to caveolae and clathrin-independent internalization of its ligand to smooth endoplasmic reticulum. Mol. Biol. Cell. 9:1773–1786. - PMC - PubMed
    1. Conner, S.D., and S.L. Schmid. 2003. Regulated portals of entry into the cell. Nature. 422:37–44. - PubMed

Publication types

MeSH terms

Substances

LinkOut - more resources