Snorkeling of lysine side chains in transmembrane helices: how easy can it get? - PubMed (original) (raw)
Snorkeling of lysine side chains in transmembrane helices: how easy can it get?
Erik Strandberg et al. FEBS Lett. 2003.
Free article
Abstract
Transmembrane segments of proteins are often flanked by lysine residues. The side chains of these residues may snorkel, i.e. they may bury themselves with their aliphatic part in the hydrophobic region of the lipid bilayer, while positioning the charged amino group in the more polar interface. Here we estimate the free energy cost of snorkeling from thermodynamical calculations based on studies with synthetic transmembrane peptides [Strandberg et al. (2002) Biochemistry 41, 7190-7198]. The value is estimated to be between 0.07 and 0.7 kcal mol(-1) for a lysine side chain. This very low value indicates that snorkeling may be a common process, which should be taken into consideration both in experimental and in theoretical studies on protein-lipid interactions.
Similar articles
- Lipid dependence of membrane anchoring properties and snorkeling behavior of aromatic and charged residues in transmembrane peptides.
Strandberg E, Morein S, Rijkers DT, Liskamp RM, van der Wel PC, Killian JA. Strandberg E, et al. Biochemistry. 2002 Jun 11;41(23):7190-8. doi: 10.1021/bi012047i. Biochemistry. 2002. PMID: 12044149 - Position-dependence of stabilizing polar interactions of asparagine in transmembrane helical bundles.
Lear JD, Gratkowski H, Adamian L, Liang J, DeGrado WF. Lear JD, et al. Biochemistry. 2003 Jun 3;42(21):6400-7. doi: 10.1021/bi020573j. Biochemistry. 2003. PMID: 12767221 - Evaluating Force Fields for the Computational Prediction of Ionized Arginine and Lysine Side-Chains Partitioning into Lipid Bilayers and Octanol.
Sun D, Forsman J, Woodward CE. Sun D, et al. J Chem Theory Comput. 2015 Apr 14;11(4):1775-91. doi: 10.1021/ct501063a. Epub 2015 Mar 4. J Chem Theory Comput. 2015. PMID: 26574387 - Protein-lipid interactions studied with designed transmembrane peptides: role of hydrophobic matching and interfacial anchoring.
de Planque MR, Killian JA. de Planque MR, et al. Mol Membr Biol. 2003 Oct-Dec;20(4):271-84. doi: 10.1080/09687680310001605352. Mol Membr Biol. 2003. PMID: 14578043 Review. - Marginally hydrophobic transmembrane α-helices shaping membrane protein folding.
De Marothy MT, Elofsson A. De Marothy MT, et al. Protein Sci. 2015 Jul;24(7):1057-74. doi: 10.1002/pro.2698. Epub 2015 May 30. Protein Sci. 2015. PMID: 25970811 Free PMC article. Review.
Cited by
- Hepatitis C virus RNA replication requires a conserved structural motif within the transmembrane domain of the NS5B RNA-dependent RNA polymerase.
Brass V, Gouttenoire J, Wahl A, Pal Z, Blum HE, Penin F, Moradpour D. Brass V, et al. J Virol. 2010 Nov;84(21):11580-4. doi: 10.1128/JVI.01519-10. Epub 2010 Aug 25. J Virol. 2010. PMID: 20739529 Free PMC article. - The Disordered Dehydrin and Its Role in Plant Protection: A Biochemical Perspective.
Smith MA, Graether SP. Smith MA, et al. Biomolecules. 2022 Feb 11;12(2):294. doi: 10.3390/biom12020294. Biomolecules. 2022. PMID: 35204794 Free PMC article. Review. - Exploring peptide-membrane interactions with coarse-grained MD simulations.
Hall BA, Chetwynd AP, Sansom MS. Hall BA, et al. Biophys J. 2011 Apr 20;100(8):1940-8. doi: 10.1016/j.bpj.2011.02.041. Biophys J. 2011. PMID: 21504730 Free PMC article. - Identification and functional analysis of new peroxygenases in oat.
Benaragama I, Meesapyodsuk D, Beattie AD, Qiu X. Benaragama I, et al. Planta. 2017 Oct;246(4):711-719. doi: 10.1007/s00425-017-2729-1. Epub 2017 Jun 29. Planta. 2017. PMID: 28664421
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources