Substrate specificity of rhomboid intramembrane proteases is governed by helix-breaking residues in the substrate transmembrane domain - PubMed (original) (raw)
Comparative Study
. 2003 Jun;11(6):1425-34.
doi: 10.1016/s1097-2765(03)00181-3.
Affiliations
- PMID: 12820957
- DOI: 10.1016/s1097-2765(03)00181-3
Free article
Comparative Study
Substrate specificity of rhomboid intramembrane proteases is governed by helix-breaking residues in the substrate transmembrane domain
Sinisa Urban et al. Mol Cell. 2003 Jun.
Free article
Abstract
Rhomboid intramembrane proteases initiate cell signaling during Drosophila development and Providencia bacterial growth by cleaving transmembrane ligand precursors. We have determined how specificity is achieved: Drosophila Rhomboid-1 is a site-specific protease that recognizes its substrate Spitz by a small region of the Spitz transmembrane domain (TMD). This substrate motif is necessary and sufficient for cleavage and is composed of residues known to disrupt helices. Rhomboids from diverse organisms including bacteria and vertebrates recognize the same substrate motif, suggesting that they use a universal targeting strategy. We used this information to search for other rhomboid substrates and identified a family of adhesion proteins from the human parasite Toxoplasma gondii, the TMDs of which were efficient substrates for rhomboid proteases. Intramembrane cleavage of these proteins is required for host cell invasion. These results provide an explanation of how rhomboid proteases achieve specificity, and allow some rhomboid substrates to be predicted from sequence information.
Similar articles
- Sequence-specific intramembrane proteolysis: identification of a recognition motif in rhomboid substrates.
Strisovsky K, Sharpe HJ, Freeman M. Strisovsky K, et al. Mol Cell. 2009 Dec 25;36(6):1048-59. doi: 10.1016/j.molcel.2009.11.006. Mol Cell. 2009. PMID: 20064469 Free PMC article. - Conservation of intramembrane proteolytic activity and substrate specificity in prokaryotic and eukaryotic rhomboids.
Urban S, Schlieper D, Freeman M. Urban S, et al. Curr Biol. 2002 Sep 3;12(17):1507-12. doi: 10.1016/s0960-9822(02)01092-8. Curr Biol. 2002. PMID: 12225666 - A family of Rhomboid intramembrane proteases activates all Drosophila membrane-tethered EGF ligands.
Urban S, Lee JR, Freeman M. Urban S, et al. EMBO J. 2002 Aug 15;21(16):4277-86. doi: 10.1093/emboj/cdf434. EMBO J. 2002. PMID: 12169630 Free PMC article. - Structural and mechanistic principles of intramembrane proteolysis--lessons from rhomboids.
Strisovsky K. Strisovsky K. FEBS J. 2013 Apr;280(7):1579-603. doi: 10.1111/febs.12199. Epub 2013 Mar 20. FEBS J. 2013. PMID: 23432912 Review. - Role of rhomboid proteases in bacteria.
Rather P. Rather P. Biochim Biophys Acta. 2013 Dec;1828(12):2849-54. doi: 10.1016/j.bbamem.2013.03.012. Epub 2013 Mar 18. Biochim Biophys Acta. 2013. PMID: 23518036 Review.
Cited by
- Membrane proteases in the bacterial protein secretion and quality control pathway.
Dalbey RE, Wang P, van Dijl JM. Dalbey RE, et al. Microbiol Mol Biol Rev. 2012 Jun;76(2):311-30. doi: 10.1128/MMBR.05019-11. Microbiol Mol Biol Rev. 2012. PMID: 22688815 Free PMC article. Review. - The crystal structure of the rhomboid peptidase from Haemophilus influenzae provides insight into intramembrane proteolysis.
Lemieux MJ, Fischer SJ, Cherney MM, Bateman KS, James MN. Lemieux MJ, et al. Proc Natl Acad Sci U S A. 2007 Jan 16;104(3):750-4. doi: 10.1073/pnas.0609981104. Epub 2007 Jan 8. Proc Natl Acad Sci U S A. 2007. PMID: 17210913 Free PMC article. - The derlin Dfm1 couples retrotranslocation of a folded protein domain to its proteasomal degradation.
Vitali DG, Fonseca D, Carvalho P. Vitali DG, et al. J Cell Biol. 2024 May 6;223(5):e202308074. doi: 10.1083/jcb.202308074. Epub 2024 Mar 5. J Cell Biol. 2024. PMID: 38448163 Free PMC article. - Rhomboid domain containing 1 promotes colorectal cancer growth through activation of the EGFR signalling pathway.
Song W, Liu W, Zhao H, Li S, Guan X, Ying J, Zhang Y, Miao F, Zhang M, Ren X, Li X, Wu F, Zhao Y, Tian Y, Wu W, Fu J, Liang J, Wu W, Liu C, Yu J, Zong S, Miao S, Zhang X, Wang L. Song W, et al. Nat Commun. 2015 Aug 24;6:8022. doi: 10.1038/ncomms9022. Nat Commun. 2015. PMID: 26300397 Free PMC article. - Molecular Basis of the Versatile Regulatory Mechanism of HtrA-Type Protease AlgW from Pseudomonas aeruginosa.
Li T, Song Y, Luo L, Zhao N, He L, Kang M, Li C, Zhu Y, Shen Y, Zhao C, Yang J, Huang Q, Mou X, Zong Z, Yang J, Tang H, He Y, Bao R. Li T, et al. mBio. 2021 Feb 23;12(1):e03299-20. doi: 10.1128/mBio.03299-20. mBio. 2021. PMID: 33622718 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases