Structure and gating mechanism of the acetylcholine receptor pore - PubMed (original) (raw)
. 2003 Jun 26;423(6943):949-55.
doi: 10.1038/nature01748.
Affiliations
- PMID: 12827192
- DOI: 10.1038/nature01748
Structure and gating mechanism of the acetylcholine receptor pore
Atsuo Miyazawa et al. Nature. 2003.
Abstract
The nicotinic acetylcholine receptor controls electrical signalling between nerve and muscle cells by opening and closing a gated, membrane-spanning pore. Here we present an atomic model of the closed pore, obtained by electron microscopy of crystalline postsynaptic membranes. The pore is shaped by an inner ring of 5 alpha-helices, which curve radially to create a tapering path for the ions, and an outer ring of 15 alpha-helices, which coil around each other and shield the inner ring from the lipids. The gate is a constricting hydrophobic girdle at the middle of the lipid bilayer, formed by weak interactions between neighbouring inner helices. When acetylcholine enters the ligand-binding domain, it triggers rotations of the protein chains on opposite sides of the entrance to the pore. These rotations are communicated through the inner helices, and open the pore by breaking the girdle apart.
Similar articles
- The nicotinic acetylcholine receptor of the Torpedo electric ray.
Unwin N. Unwin N. J Struct Biol. 1998;121(2):181-90. doi: 10.1006/jsbi.1997.3949. J Struct Biol. 1998. PMID: 9615437 Review. - Structure of the acetylcholine-gated channel.
Unwin N. Unwin N. Novartis Found Symp. 2002;245:5-15; discussion 15-21, 165-8. Novartis Found Symp. 2002. PMID: 12027014 Review. - Structure and action of the nicotinic acetylcholine receptor explored by electron microscopy.
Unwin N. Unwin N. FEBS Lett. 2003 Nov 27;555(1):91-5. doi: 10.1016/s0014-5793(03)01084-6. FEBS Lett. 2003. PMID: 14630325 Review. - Refined structure of the nicotinic acetylcholine receptor at 4A resolution.
Unwin N. Unwin N. J Mol Biol. 2005 Mar 4;346(4):967-89. doi: 10.1016/j.jmb.2004.12.031. Epub 2005 Jan 25. J Mol Biol. 2005. PMID: 15701510 - Acetylcholine receptor channel imaged in the open state.
Unwin N. Unwin N. Nature. 1995 Jan 5;373(6509):37-43. doi: 10.1038/373037a0. Nature. 1995. PMID: 7800037
Cited by
- Case Report: Novel compound heterozygous variants in CHRNA1 gene leading to lethal multiple pterygium syndrome: A case report.
Zhuang J, Wang J, Luo Q, Zeng S, Chen Y, Jiang Y, Chen X, Wang Y, Xie Y, Wang G, Chen C. Zhuang J, et al. Front Genet. 2022 Aug 26;13:964098. doi: 10.3389/fgene.2022.964098. eCollection 2022. Front Genet. 2022. PMID: 36092864 Free PMC article. - CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures.
Chovancova E, Pavelka A, Benes P, Strnad O, Brezovsky J, Kozlikova B, Gora A, Sustr V, Klvana M, Medek P, Biedermannova L, Sochor J, Damborsky J. Chovancova E, et al. PLoS Comput Biol. 2012;8(10):e1002708. doi: 10.1371/journal.pcbi.1002708. Epub 2012 Oct 18. PLoS Comput Biol. 2012. PMID: 23093919 Free PMC article. - Evolution of the genetic code by incorporation of amino acids that improved or changed protein function.
Francis BR. Francis BR. J Mol Evol. 2013 Oct;77(4):134-58. doi: 10.1007/s00239-013-9567-y. Epub 2013 Jun 7. J Mol Evol. 2013. PMID: 23743924 - Assessment of homology templates and an anesthetic binding site within the γ-aminobutyric acid receptor.
Bertaccini EJ, Yoluk O, Lindahl ER, Trudell JR. Bertaccini EJ, et al. Anesthesiology. 2013 Nov;119(5):1087-95. doi: 10.1097/ALN.0b013e31829e47e3. Anesthesiology. 2013. PMID: 23770602 Free PMC article. - Nocturnal frontal lobe epilepsy with paroxysmal arousals due to CHRNA2 loss of function.
Conti V, Aracri P, Chiti L, Brusco S, Mari F, Marini C, Albanese M, Marchi A, Liguori C, Placidi F, Romigi A, Becchetti A, Guerrini R. Conti V, et al. Neurology. 2015 Apr 14;84(15):1520-8. doi: 10.1212/WNL.0000000000001471. Epub 2015 Mar 13. Neurology. 2015. PMID: 25770198 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources