Free RNA polymerase and modeling global transcription in Escherichia coli - PubMed (original) (raw)
Free RNA polymerase and modeling global transcription in Escherichia coli
H Bremer et al. Biochimie. 2003 Jun.
Abstract
Growth rate-dependent changes in the cytoplasmic concentration of free functional RNA polymerase, [R(f)], affect the activity of all bacterial genes. Since [R(f)] is not accessible to direct experimental quantitation, it can only be found indirectly from an evaluation of promoter activity data. Here, a theory has been derived to calculate [R(f)] from the concentrations of total RNA polymerase and promoters in a model system with known Michaelis-Menten constants for the polymerase-promoter interactions. The theory takes transcript lengths and elongation rates into account and predicts how [R(f)] changes with varying gene dosages. From experimental data on total concentrations of RNA polymerase and kinetic properties of different classes of promoters, the theory was developed into a mathematical model that reproduces the global transcriptional control in Escherichia coli growing at different rates. The model allows an estimation of the concentrations of free and DNA-bound RNA polymerase, as well as the partitioning of RNA polymerase into mRNA and stable RNA synthesizing fractions. According to this model, [R(f)] is about 0.4 and 1.2 microM at growth rates corresponding to 1.0 and 2.5 doublings/h, respectively. The model accurately reflects a number of further experimental observations and suggests that the free RNA polymerase concentration increases with increasing growth rate.
Similar articles
- Free RNA polymerase in Escherichia coli.
Patrick M, Dennis PP, Ehrenberg M, Bremer H. Patrick M, et al. Biochimie. 2015 Dec;119:80-91. doi: 10.1016/j.biochi.2015.10.015. Epub 2015 Oct 19. Biochimie. 2015. PMID: 26482806 - Kinetic properties of rrn promoters in Escherichia coli.
Zhang X, Dennis P, Ehrenberg M, Bremer H. Zhang X, et al. Biochimie. 2002 Oct;84(10):981-96. doi: 10.1016/s0300-9084(02)00010-x. Biochimie. 2002. PMID: 12504278 - Domain 1.1 of the sigma(70) subunit of Escherichia coli RNA polymerase modulates the formation of stable polymerase/promoter complexes.
Vuthoori S, Bowers CW, McCracken A, Dombroski AJ, Hinton DM. Vuthoori S, et al. J Mol Biol. 2001 Jun 8;309(3):561-72. doi: 10.1006/jmbi.2001.4690. J Mol Biol. 2001. PMID: 11397080 - Guanosine tetraphosphate as a global regulator of bacterial RNA synthesis: a model involving RNA polymerase pausing and queuing.
Bremer H, Ehrenberg M. Bremer H, et al. Biochim Biophys Acta. 1995 May 17;1262(1):15-36. doi: 10.1016/0167-4781(95)00042-f. Biochim Biophys Acta. 1995. PMID: 7539631 Review. - Promoter structure, promoter recognition, and transcription activation in prokaryotes.
Busby S, Ebright RH. Busby S, et al. Cell. 1994 Dec 2;79(5):743-6. doi: 10.1016/0092-8674(94)90063-9. Cell. 1994. PMID: 8001112 Review. No abstract available.
Cited by
- A proximal promoter element required for positive transcriptional control by guanosine tetraphosphate and DksA protein during the stringent response.
Gummesson B, Lovmar M, Nyström T. Gummesson B, et al. J Biol Chem. 2013 Jul 19;288(29):21055-21064. doi: 10.1074/jbc.M113.479998. Epub 2013 Jun 7. J Biol Chem. 2013. PMID: 23749992 Free PMC article. - Clusters of bacterial RNA polymerase are biomolecular condensates that assemble through liquid-liquid phase separation.
Ladouceur AM, Parmar BS, Biedzinski S, Wall J, Tope SG, Cohn D, Kim A, Soubry N, Reyes-Lamothe R, Weber SC. Ladouceur AM, et al. Proc Natl Acad Sci U S A. 2020 Aug 4;117(31):18540-18549. doi: 10.1073/pnas.2005019117. Epub 2020 Jul 16. Proc Natl Acad Sci U S A. 2020. PMID: 32675239 Free PMC article. - A superresolution census of RNA polymerase.
Klumpp S. Klumpp S. Biophys J. 2013 Dec 17;105(12):2613-4. doi: 10.1016/j.bpj.2013.11.018. Biophys J. 2013. PMID: 24359730 Free PMC article. No abstract available. - Modular composition of gene transcription networks.
Gyorgy A, Del Vecchio D. Gyorgy A, et al. PLoS Comput Biol. 2014 Mar 13;10(3):e1003486. doi: 10.1371/journal.pcbi.1003486. eCollection 2014 Mar. PLoS Comput Biol. 2014. PMID: 24626132 Free PMC article. - Quantitative modeling of transcription and translation of an all-E. coli cell-free system.
Marshall R, Noireaux V. Marshall R, et al. Sci Rep. 2019 Aug 19;9(1):11980. doi: 10.1038/s41598-019-48468-8. Sci Rep. 2019. PMID: 31427623 Free PMC article.