A probabilistic method to detect regulatory modules - PubMed (original) (raw)
Comparative Study
A probabilistic method to detect regulatory modules
Saurabh Sinha et al. Bioinformatics. 2003.
Abstract
Motivation: The discovery of cis-regulatory modules in metazoan genomes is crucial for understanding the connection between genes and organism diversity.
Results: We develop a computational method that uses Hidden Markov Models and an Expectation Maximization algorithm to detect such modules, given the weight matrices of a set of transcription factors known to work together. Two novel features of our probabilistic model are: (i) correlations between binding sites, known to be required for module activity, are exploited, and (ii) phylogenetic comparisons among sequences from multiple species are made to highlight a regulatory module. The novel features are shown to improve detection of modules, in experiments on synthetic as well as biological data.
Similar articles
- Prediction of similarly acting cis-regulatory modules by subsequence profiling and comparative genomics in Drosophila melanogaster and D.pseudoobscura.
Grad YH, Roth FP, Halfon MS, Church GM. Grad YH, et al. Bioinformatics. 2004 Nov 1;20(16):2738-50. doi: 10.1093/bioinformatics/bth320. Epub 2004 May 14. Bioinformatics. 2004. PMID: 15145800 - MORPH: probabilistic alignment combined with hidden Markov models of cis-regulatory modules.
Sinha S, He X. Sinha S, et al. PLoS Comput Biol. 2007 Nov;3(11):e216. doi: 10.1371/journal.pcbi.0030216. Epub 2007 Sep 24. PLoS Comput Biol. 2007. PMID: 17997594 Free PMC article. - Finding cis-regulatory modules in Drosophila using phylogenetic hidden Markov models.
Wong WS, Nielsen R. Wong WS, et al. Bioinformatics. 2007 Aug 15;23(16):2031-7. doi: 10.1093/bioinformatics/btm299. Epub 2007 Jun 5. Bioinformatics. 2007. PMID: 17550911 - Computational methods for the detection of cis-regulatory modules.
Van Loo P, Marynen P. Van Loo P, et al. Brief Bioinform. 2009 Sep;10(5):509-24. doi: 10.1093/bib/bbp025. Epub 2009 Jun 4. Brief Bioinform. 2009. PMID: 19498042 Review. - Hidden Markov model and its applications in motif findings.
Wu J, Xie J. Wu J, et al. Methods Mol Biol. 2010;620:405-16. doi: 10.1007/978-1-60761-580-4_13. Methods Mol Biol. 2010. PMID: 20652513 Review.
Cited by
- LOESS correction for length variation in gene set-based genomic sequence analysis.
Aboukhalil A, Bulyk ML. Aboukhalil A, et al. Bioinformatics. 2012 Jun 1;28(11):1446-54. doi: 10.1093/bioinformatics/bts155. Epub 2012 Apr 5. Bioinformatics. 2012. PMID: 22492312 Free PMC article. - CORECLUST: identification of the conserved CRM grammar together with prediction of gene regulation.
Nikulova AA, Favorov AV, Sutormin RA, Makeev VJ, Mironov AA. Nikulova AA, et al. Nucleic Acids Res. 2012 Jul;40(12):e93. doi: 10.1093/nar/gks235. Epub 2012 Mar 15. Nucleic Acids Res. 2012. PMID: 22422836 Free PMC article. - Comparative analysis of regulatory motif discovery tools for transcription factor binding sites.
Wei W, Yu XD. Wei W, et al. Genomics Proteomics Bioinformatics. 2007 May;5(2):131-42. doi: 10.1016/S1672-0229(07)60023-0. Genomics Proteomics Bioinformatics. 2007. PMID: 17893078 Free PMC article. - TREMOR--a tool for retrieving transcriptional modules by incorporating motif covariance.
Singh LN, Wang LS, Hannenhalli S. Singh LN, et al. Nucleic Acids Res. 2007;35(21):7360-71. doi: 10.1093/nar/gkm885. Epub 2007 Oct 25. Nucleic Acids Res. 2007. PMID: 17962303 Free PMC article. - TFforge utilizes large-scale binding site divergence to identify transcriptional regulators involved in phenotypic differences.
Langer BE, Hiller M. Langer BE, et al. Nucleic Acids Res. 2019 Feb 28;47(4):e19. doi: 10.1093/nar/gky1200. Nucleic Acids Res. 2019. PMID: 30496469 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources