Transcription regulators potentially controlled by HPr kinase/phosphorylase in Gram-negative bacteria - PubMed (original) (raw)

Review

Transcription regulators potentially controlled by HPr kinase/phosphorylase in Gram-negative bacteria

Grégory Boël et al. J Mol Microbiol Biotechnol. 2003.

Abstract

Phosphorylation and dephosphorylation at Ser-46 in HPr, a phosphocarrier protein of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) is controlled by the bifunctional HPr kinase/phosphorylase (HprK/P). In Gram-positive bacteria, P-Ser-HPr controls (1) sugar uptake via the PTS; (2) catabolite control protein A (CcpA)-mediated carbon catabolite repression, and (3) inducer exclusion. Genome sequencing revealed that HprK/P is absent from Gram-negative enteric bacteria, but present in many other proteobacteria. These organisms also possess (1) HPr, the substrate for HprK/P; (2) enzyme I, which phosphorylates HPr at His-15, and (3) one or several enzymes IIA, which receive the phosphoryl group from P approximately His-HPr. The genes encoding the PTS proteins are often organized in an operon with HPRK. However, most of these organisms miss CcpA and a functional PTS, as enzymes IIB and membrane-integrated enzymes IIC seem to be absent. HprK/P and the rudimentary PTS phosphorylation cascade in Gram-negative bacteria must therefore carry out functions different from those in Gram-positive organisms. The gene organization in many HprK/P-containing Gram-negative bacteria as well as some preliminary experiments suggest that HprK/P might control transcription regulators implicated in cell adhesion and virulence. In alpha-proteobacteria, HPRK is located downstream of genes encoding a two-component system of the EnvZ/OmpR family. In several other proteobacteria, HPRK is organized in an operon together with genes from the RPON region of ESCHERICHIA COLI (RPON encodes a sigma54). We propose that HprK/P might control the phosphorylation state of HPr and EIIAs, which in turn could control the transcription regulators.

Copyright 2003 S. Karger AG, Basel

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources