Stochastic search variable selection for identifying multiple quantitative trait loci - PubMed (original) (raw)
Stochastic search variable selection for identifying multiple quantitative trait loci
Nengjun Yi et al. Genetics. 2003 Jul.
Abstract
In this article, we utilize stochastic search variable selection methodology to develop a Bayesian method for identifying multiple quantitative trait loci (QTL) for complex traits in experimental designs. The proposed procedure entails embedding multiple regression in a hierarchical normal mixture model, where latent indicators for all markers are used to identify the multiple markers. The markers with significant effects can be identified as those with higher posterior probability included in the model. A simple and easy-to-use Gibbs sampler is employed to generate samples from the joint posterior distribution of all unknowns including the latent indicators, genetic effects for all markers, and other model parameters. The proposed method was evaluated using simulated data and illustrated using a real data set. The results demonstrate that the proposed method works well under typical situations of most QTL studies in terms of number of markers and marker density.
Similar articles
- Bayesian model choice and search strategies for mapping interacting quantitative trait Loci.
Yi N, Xu S, Allison DB. Yi N, et al. Genetics. 2003 Oct;165(2):867-83. doi: 10.1093/genetics/165.2.867. Genetics. 2003. PMID: 14573494 Free PMC article. - Bayesian mapping of quantitative trait loci for complex binary traits.
Yi N, Xu S. Yi N, et al. Genetics. 2000 Jul;155(3):1391-403. doi: 10.1093/genetics/155.3.1391. Genetics. 2000. PMID: 10880497 Free PMC article. - An empirical Bayes method for estimating epistatic effects of quantitative trait loci.
Xu S. Xu S. Biometrics. 2007 Jun;63(2):513-21. doi: 10.1111/j.1541-0420.2006.00711.x. Biometrics. 2007. PMID: 17688503 - Overview of LASSO-related penalized regression methods for quantitative trait mapping and genomic selection.
Li Z, Sillanpää MJ. Li Z, et al. Theor Appl Genet. 2012 Aug;125(3):419-35. doi: 10.1007/s00122-012-1892-9. Epub 2012 May 24. Theor Appl Genet. 2012. PMID: 22622521 Review. - Model selection and Bayesian methods in statistical genetics: summary of group 11 contributions to Genetic Analysis Workshop 15.
Swartz MD, Thomas DC, Daw EW, Albers K, Charlesworth JC, Dyer TC, Fridley BL, Govil M, Kraft P, Kwon S, Logue MW, Oh C, Pique-Regi R, Saba L, Schumacher FR, Uh HW. Swartz MD, et al. Genet Epidemiol. 2007;31 Suppl 1:S96-102. doi: 10.1002/gepi.20285. Genet Epidemiol. 2007. PMID: 18046760 Review.
Cited by
- A Bayesian Partial Membership Model for Multiple Exposures with Uncertain Group Memberships.
Zavez AE, McSorley EM, Yeates AJ, Thurston SW. Zavez AE, et al. J Agric Biol Environ Stat. 2023 Sep;28(3):377-400. doi: 10.1007/s13253-023-00528-3. Epub 2023 Feb 14. J Agric Biol Environ Stat. 2023. PMID: 39492941 Free PMC article. - Bayesian mixed models for longitudinal genetic data: theory, concepts, and simulation studies.
Chung W, Cho Y. Chung W, et al. Genomics Inform. 2022 Mar;20(1):e8. doi: 10.5808/gi.21080. Epub 2022 Mar 31. Genomics Inform. 2022. PMID: 35399007 Free PMC article. - Genome-Wide Identification of Candidate Genes for Milk Production Traits in Korean Holstein Cattle.
Kim S, Lim B, Cho J, Lee S, Dang CG, Jeon JH, Kim JM, Lee J. Kim S, et al. Animals (Basel). 2021 May 13;11(5):1392. doi: 10.3390/ani11051392. Animals (Basel). 2021. PMID: 34068321 Free PMC article. - Deciphering Sex-Specific Genetic Architectures Using Local Bayesian Regressions.
Funkhouser SA, Vazquez AI, Steibel JP, Ernst CW, Los Campos G. Funkhouser SA, et al. Genetics. 2020 May;215(1):231-241. doi: 10.1534/genetics.120.303120. Epub 2020 Mar 20. Genetics. 2020. PMID: 32198180 Free PMC article. - Functional models in genome-wide selection.
Moura EG, Pamplona AKA, Balestre M. Moura EG, et al. PLoS One. 2019 Oct 23;14(10):e0222699. doi: 10.1371/journal.pone.0222699. eCollection 2019. PLoS One. 2019. PMID: 31644532 Free PMC article.
References
- Genet Res. 1999 Dec;74(3):279-89 - PubMed
- Genetics. 2003 Feb;163(2):789-801 - PubMed
- Genetics. 1994 Apr;136(4):1457-68 - PubMed
- Genetics. 1996 Oct;144(2):805-16 - PubMed
- Genetics. 1998 Mar;148(3):1373-88 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources