Regulation of fibroblastic growth factor 23 expression but not degradation by PHEX - PubMed (original) (raw)
. 2003 Sep 26;278(39):37419-26.
doi: 10.1074/jbc.M304544200. Epub 2003 Jul 21.
Affiliations
- PMID: 12874285
- DOI: 10.1074/jbc.M304544200
Free article
Regulation of fibroblastic growth factor 23 expression but not degradation by PHEX
Shiguang Liu et al. J Biol Chem. 2003.
Free article
Abstract
Inactivating mutations of Phex cause X-linked hypophosphatemia (XLH) by increasing levels of a circulating phosphaturic factor. FGF23 is a candidate for this phosphaturic factor. Elevated serum FGF23 levels correlate with the degree of hypophosphatemia in XLH, suggesting that loss of Phex function in this disorder results in either diminished degradation and/or increased biosynthesis of FGF23. To establish the mechanisms whereby Phex regulates FGF23, we assessed Phex-dependent hydrolysis of recombinant FGF23 in vitro and measured fgf23 message levels in the Hyp mouse homologue of XLH. In COS-7 cells, overexpression of FGF23 resulted in its degradation into N- and C-terminal fragments by an endogenous decanoyl-Arg-Val-Lys-Arg-chloromethyl ketone-sensitive furin-type convertase. Phex-dependent hydrolysis of full-length FGF23 or its N- and C-terminal fragments could not be demonstrated in the presence or absence of decanoyl-Arg-Val-Lys-Arg-chloromethyl ketone in COS-7 cells expressing Phex and FGF23. In a reticulolysate system, apparent cleavage of FGF23 occurred with wild-type Phex, the inactive Phex-3'M mutant, and vector controls, indicating nonspecific metabolism of FGF23 by contaminating enzymes. These findings suggest that FGF23 is not a direct Phex substrate. In contrast, by real-time reverse transcriptase PCR, the levels of fgf23 transcripts were highest in bone, the predominant site of Phex expression. In addition, Hyp mice displayed a bone-restricted increase in fgf23 transcripts in association with inactivating Phex mutations. Increased expression of fgf23 was also observed in Hyp-derived osteoblasts in culture. These findings suggest that Phex, possibly through the actions of unidentified Phex substrates or other downstream effectors, regulates fgf23 expression as part of a potential hormonal axis between bone and kidney that controls systemic phosphate homeostasis and mineralization.
Similar articles
- FGF23, PHEX, and MEPE regulation of phosphate homeostasis and skeletal mineralization.
Quarles LD. Quarles LD. Am J Physiol Endocrinol Metab. 2003 Jul;285(1):E1-9. doi: 10.1152/ajpendo.00016.2003. Am J Physiol Endocrinol Metab. 2003. PMID: 12791601 Review. - Distinct roles for intrinsic osteocyte abnormalities and systemic factors in regulation of FGF23 and bone mineralization in Hyp mice.
Liu S, Tang W, Zhou J, Vierthaler L, Quarles LD. Liu S, et al. Am J Physiol Endocrinol Metab. 2007 Dec;293(6):E1636-44. doi: 10.1152/ajpendo.00396.2007. Epub 2007 Sep 11. Am J Physiol Endocrinol Metab. 2007. PMID: 17848631 - Pathogenic role of Fgf23 in Hyp mice.
Liu S, Zhou J, Tang W, Jiang X, Rowe DW, Quarles LD. Liu S, et al. Am J Physiol Endocrinol Metab. 2006 Jul;291(1):E38-49. doi: 10.1152/ajpendo.00008.2006. Epub 2006 Jan 31. Am J Physiol Endocrinol Metab. 2006. PMID: 16449303 - Bone proteins PHEX and DMP1 regulate fibroblastic growth factor Fgf23 expression in osteocytes through a common pathway involving FGF receptor (FGFR) signaling.
Martin A, Liu S, David V, Li H, Karydis A, Feng JQ, Quarles LD. Martin A, et al. FASEB J. 2011 Aug;25(8):2551-62. doi: 10.1096/fj.10-177816. Epub 2011 Apr 20. FASEB J. 2011. PMID: 21507898 Free PMC article. - The wrickkened pathways of FGF23, MEPE and PHEX.
Rowe PS. Rowe PS. Crit Rev Oral Biol Med. 2004 Sep 1;15(5):264-81. doi: 10.1177/154411130401500503. Crit Rev Oral Biol Med. 2004. PMID: 15470265 Free PMC article. Review.
Cited by
- Effect of Mutation Type on Ectopic Ossification Among Adult Patients With X-Linked Hypophosphatemia.
Kato H, Ishihara Y, Ohata Y, Irie K, Watanabe S, Kimura S, Hoshino Y, Hidaka N, Kinoshita Y, Taniguchi Y, Kobayashi H, Braddock DT, Kubota T, Ozono K, Nangaku M, Makita N, Ito N. Kato H, et al. J Endocr Soc. 2024 Oct 22;8(12):bvae184. doi: 10.1210/jendso/bvae184. eCollection 2024 Oct 29. J Endocr Soc. 2024. PMID: 39498416 Free PMC article. - Ethnic and seasonal variations in FGF-23 and markers of chronic kidney disease-mineral and bone disorder.
Taskapan H, Mahdavi S, Bellasi A, Martin S, Kuvadia S, Patel A, Taskapan B, Tam P, Sikaneta T. Taskapan H, et al. Clin Kidney J. 2024 Jun 20;17(7):sfae188. doi: 10.1093/ckj/sfae188. eCollection 2024 Jul. Clin Kidney J. 2024. PMID: 39070948 Free PMC article. - Both enantiomers of β-aminoisobutyric acid BAIBA regulate Fgf23 via MRGPRD receptor by activating distinct signaling pathways in osteocytes.
Sakamoto E, Kitase Y, Fitt AJ, Zhu Z, Awad K, Brotto M, White KE, Welc SS, Bergwitz C, Bonewald LF. Sakamoto E, et al. Cell Rep. 2024 Jul 23;43(7):114397. doi: 10.1016/j.celrep.2024.114397. Epub 2024 Jun 25. Cell Rep. 2024. PMID: 38935499 Free PMC article. - Bone marrow transplantation reduces FGF-23 levels and restores bone formation in myelodysplastic neoplasms.
Weidner H, Baschant U, Ledesma-Colunga MG, Basiak K, Tsourdi E, Sockel K, Götze KS, Rivière J, Platzbecker U, Hofbauer LC, Rauner M. Weidner H, et al. Leukemia. 2024 Aug;38(8):1853-1857. doi: 10.1038/s41375-024-02315-6. Epub 2024 Jun 21. Leukemia. 2024. PMID: 38906963 Free PMC article. No abstract available. - Establishing a Reference Interval for Fibroblast Growth Factor (FGF)-23 in Cats.
Lapsina S, von Luckner J, Nagler N, Müller SF, Müller E, Schäfer I. Lapsina S, et al. Animals (Basel). 2024 Jun 3;14(11):1670. doi: 10.3390/ani14111670. Animals (Basel). 2024. PMID: 38891718 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources