NKT cells from normal and tumor-bearing human livers are phenotypically and functionally distinct from murine NKT cells - PubMed (original) (raw)
Comparative Study
. 2003 Aug 15;171(4):1775-9.
doi: 10.4049/jimmunol.171.4.1775.
Affiliations
- PMID: 12902477
- DOI: 10.4049/jimmunol.171.4.1775
Comparative Study
NKT cells from normal and tumor-bearing human livers are phenotypically and functionally distinct from murine NKT cells
Tony Kenna et al. J Immunol. 2003.
Erratum in
- J Immunol. 2003 Nov 15;171(10):5631. Mason Lucy Golden [corrected to Golden-Mason Lucy]
Abstract
A major group of murine NK T (NKT) cells express an invariant Valpha14Jalpha18 TCR alpha-chain specific for glycolipid Ags presented by CD1d. Murine Valpha14Jalpha18(+) account for 30-50% of hepatic T cells and have potent antitumor activities. We have enumerated and characterized their human counterparts, Valpha24Vbeta11(+) NKT cells, freshly isolated from histologically normal and tumor-bearing livers. In contrast to mice, human NKT cells are found in small numbers in healthy liver (0.5% of CD3(+) cells) and blood (0.02%). In contrast to those in blood, most hepatic Valpha24(+) NKT cells express the Vbeta11 chain. They include CD4(+), CD8(+), and CD4(-)CD8(-) cells, and many express the NK cell markers CD56, CD161, and/or CD69. Importantly, human hepatic Valpha24(+) T cells are potent producers of IFN-gamma and TNF-alpha, but not IL-2 or IL-4, when stimulated pharmacologically or with the NKT cell ligand, alpha-galactosylceramide. Valpha24(+)Vbeta11(+) cell numbers are reduced in tumor-bearing compared with healthy liver (0.1 vs 0.5%; p < 0.04). However, hepatic cells from cancer patients and healthy donors release similar amounts of IFN-gamma in response to alpha-galactosylceramide. These data indicate that hepatic NKT cell repertoires are phenotypically and functionally distinct in humans and mice. Depletions of hepatic NKT cell subpopulations may underlie the susceptibility to metastatic liver disease.
Similar articles
- A subset of NKT cells that lacks the NK1.1 marker, expresses CD1d molecules, and autopresents the alpha-galactosylceramide antigen.
Hameg A, Apostolou I, Leite-De-Moraes M, Gombert JM, Garcia C, Koezuka Y, Bach JF, Herbelin A. Hameg A, et al. J Immunol. 2000 Nov 1;165(9):4917-26. doi: 10.4049/jimmunol.165.9.4917. J Immunol. 2000. PMID: 11046017 - Cutting edge: analysis of human V alpha 24+CD8+ NK T cells activated by alpha-galactosylceramide-pulsed monocyte-derived dendritic cells.
Takahashi T, Chiba S, Nieda M, Azuma T, Ishihara S, Shibata Y, Juji T, Hirai H. Takahashi T, et al. J Immunol. 2002 Apr 1;168(7):3140-4. doi: 10.4049/jimmunol.168.7.3140. J Immunol. 2002. PMID: 11907064 - Human invariant V alpha 24-J alpha Q TCR supports the development of CD1d-dependent NK1.1+ and NK1.1- T cells in transgenic mice.
Capone M, Cantarella D, Schümann J, Naidenko OV, Garavaglia C, Beermann F, Kronenberg M, Dellabona P, MacDonald HR, Casorati G. Capone M, et al. J Immunol. 2003 Mar 1;170(5):2390-8. doi: 10.4049/jimmunol.170.5.2390. J Immunol. 2003. PMID: 12594262 - Natural killer T cell-mediated immunotherapy for malignant diseases.
Motohashi S, Nakayama T. Motohashi S, et al. Front Biosci (Schol Ed). 2009 Jun 1;1(1):108-16. doi: 10.2741/s10. Front Biosci (Schol Ed). 2009. PMID: 19482686 Review. - Antitumor immunity produced by the liver Kupffer cells, NK cells, NKT cells, and CD8 CD122 T cells.
Seki S, Nakashima H, Nakashima M, Kinoshita M. Seki S, et al. Clin Dev Immunol. 2011;2011:868345. doi: 10.1155/2011/868345. Epub 2011 Nov 29. Clin Dev Immunol. 2011. PMID: 22190974 Free PMC article. Review.
Cited by
- Unedited allogeneic iNKT cells show extended persistence in MHC-mismatched canine recipients.
Rotolo A, Whelan EC, Atherton MJ, Kulikovskaya I, Jarocha D, Fraietta JA, Kim MM, Diffenderfer ES, Cengel KA, Piviani M, Radaelli E, Duran-Struuck R, Mason NJ. Rotolo A, et al. Cell Rep Med. 2023 Oct 17;4(10):101241. doi: 10.1016/j.xcrm.2023.101241. Cell Rep Med. 2023. PMID: 37852175 Free PMC article. - Homeostatic role of B-1 cells in tissue immunity.
Suchanek O, Clatworthy MR. Suchanek O, et al. Front Immunol. 2023 Sep 8;14:1106294. doi: 10.3389/fimmu.2023.1106294. eCollection 2023. Front Immunol. 2023. PMID: 37744333 Free PMC article. Review. - Tissue-resident and innate-like T cells in patients with advanced chronic liver disease.
Ibidapo-Obe O, Bruns T. Ibidapo-Obe O, et al. JHEP Rep. 2023 Jun 7;5(10):100812. doi: 10.1016/j.jhepr.2023.100812. eCollection 2023 Oct. JHEP Rep. 2023. PMID: 37691689 Free PMC article. Review. - Hepatic Global Transcriptomic Profiles of Holstein Cows According to Parity Reveal Age-Related Changes in Early Lactation.
Cheng Z, Ferris C, Crowe MA, Ingvartsen KL, Grelet C, Vanlierde A, Foldager L, Becker F, Wathes DC, The GplusE Consortium. Cheng Z, et al. Int J Mol Sci. 2023 Jun 8;24(12):9906. doi: 10.3390/ijms24129906. Int J Mol Sci. 2023. PMID: 37373054 Free PMC article. - The effect of blocking immune checkpoints LAG-3 and PD-1 on human invariant Natural Killer T cell function.
Balasko AL, Kowatsch MM, Graydon C, Lajoie J, Fowke KR. Balasko AL, et al. Sci Rep. 2023 Jun 21;13(1):10082. doi: 10.1038/s41598-023-36468-8. Sci Rep. 2023. PMID: 37344517 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Research Materials