Cellular responses to hypoxia after renal segmental infarction - PubMed (original) (raw)
Cellular responses to hypoxia after renal segmental infarction
Christian Rosenberger et al. Kidney Int. 2003 Sep.
Free article
Abstract
Background: Hypoxia is believed to play an important role in the pathogenesis of acute and chronic kidney disease. However, the impact of low oxygen tensions on cellular functions in the kidney and potential adaptive responses are poorly understood.
Methods: In order to assess the effects of regional hypoxia, we induced large segmental renal infarcts in rats by renal artery branch ligation to create an oxygen gradient vertical to the corticomedullary axis and studied the effects on cell morphology, the induction of hypoxia-inducible transcription factors (HIF), the expression of HIF target genes, and cell proliferation.
Results: Pimonidazol protein adduct immunohistochemistry, a marker for severe tissue hypoxia, verified a continuous area of hypoxic renal tissue extending from the cortex to the papilla, in which tubular necrosis developed subsequently. Within this area local sparing of pimonidazol staining and tissue preservation was found around arcuate veins, indicating regional oxygen supply via diffusion from venous blood. HIF-1alpha was up-regulated within 1 hour and for up to 7 days predominantly in the border zone of the infarct in tubular cells, glomerular cells, resident interstitial cells, capillary endothelial cells, and infiltrating macrophages. HIF-2alpha expression was less prominent and confined to resident and infiltrating peritubular cells in the cortex. HIF expression was colocalized with regional up-regulation of the hypoxia-inducible genes heme oxygenase-1 and vascular endothelial growth factor (VEGF), and was followed by capillary and tubular proliferation.
Conclusion: Our findings illustrate a marked potential of renal tissue to respond to regional ischemia and initiate adaptive reactions, including angiogenesis.
Similar articles
- Expression of hypoxia-inducible factor-1alpha and -2alpha in hypoxic and ischemic rat kidneys.
Rosenberger C, Mandriota S, Jürgensen JS, Wiesener MS, Hörstrup JH, Frei U, Ratcliffe PJ, Maxwell PH, Bachmann S, Eckardt KU. Rosenberger C, et al. J Am Soc Nephrol. 2002 Jul;13(7):1721-32. doi: 10.1097/01.asn.0000017223.49823.2a. J Am Soc Nephrol. 2002. PMID: 12089367 - Up-regulation of HIF in experimental acute renal failure: evidence for a protective transcriptional response to hypoxia.
Rosenberger C, Heyman SN, Rosen S, Shina A, Goldfarb M, Griethe W, Frei U, Reinke P, Bachmann S, Eckardt KU. Rosenberger C, et al. Kidney Int. 2005 Feb;67(2):531-42. doi: 10.1111/j.1523-1755.2005.67110.x. Kidney Int. 2005. PMID: 15673301 - Persistent induction of HIF-1alpha and -2alpha in cardiomyocytes and stromal cells of ischemic myocardium.
Jürgensen JS, Rosenberger C, Wiesener MS, Warnecke C, Hörstrup JH, Gräfe M, Philipp S, Griethe W, Maxwell PH, Frei U, Bachmann S, Willenbrock R, Eckardt KU. Jürgensen JS, et al. FASEB J. 2004 Sep;18(12):1415-7. doi: 10.1096/fj.04-1605fje. Epub 2004 Jul 9. FASEB J. 2004. PMID: 15247145 - Role of hypoxia in the pathogenesis of renal disease.
Eckardt KU, Rosenberger C, Jürgensen JS, Wiesener MS. Eckardt KU, et al. Blood Purif. 2003;21(3):253-7. doi: 10.1159/000070698. Blood Purif. 2003. PMID: 12784052 Review. - Role of oxygen and the HIF-pathway in polycystic kidney disease.
Buchholz B, Eckardt KU. Buchholz B, et al. Cell Signal. 2020 May;69:109524. doi: 10.1016/j.cellsig.2020.109524. Epub 2020 Jan 2. Cell Signal. 2020. PMID: 31904413 Review.
Cited by
- HIF activation protects from acute kidney injury.
Weidemann A, Bernhardt WM, Klanke B, Daniel C, Buchholz B, Câmpean V, Amann K, Warnecke C, Wiesener MS, Eckardt KU, Willam C. Weidemann A, et al. J Am Soc Nephrol. 2008 Mar;19(3):486-94. doi: 10.1681/ASN.2007040419. Epub 2008 Feb 6. J Am Soc Nephrol. 2008. PMID: 18256363 Free PMC article. - Ischemia and Reperfusion Injury in Kidney Transplantation: Relevant Mechanisms in Injury and Repair.
Nieuwenhuijs-Moeke GJ, Pischke SE, Berger SP, Sanders JSF, Pol RA, Struys MMRF, Ploeg RJ, Leuvenink HGD. Nieuwenhuijs-Moeke GJ, et al. J Clin Med. 2020 Jan 17;9(1):253. doi: 10.3390/jcm9010253. J Clin Med. 2020. PMID: 31963521 Free PMC article. Review. - Hypoxia-inducible factors in the kidney.
Haase VH. Haase VH. Am J Physiol Renal Physiol. 2006 Aug;291(2):F271-81. doi: 10.1152/ajprenal.00071.2006. Epub 2006 Mar 22. Am J Physiol Renal Physiol. 2006. PMID: 16554418 Free PMC article. Review. - Associations of high altitude polycythemia with polymorphisms in EPHA2 and AGT in Chinese Han and Tibetan populations.
Liu L, Zhang Y, Zhang Z, Zhao Y, Fan X, Ma L, Zhang Y, He H, Kang L. Liu L, et al. Oncotarget. 2017 Jun 6;8(32):53234-53243. doi: 10.18632/oncotarget.18384. eCollection 2017 Aug 8. Oncotarget. 2017. PMID: 28881807 Free PMC article. - Immunopathophysiology of trauma-related acute kidney injury.
Messerer DAC, Halbgebauer R, Nilsson B, Pavenstädt H, Radermacher P, Huber-Lang M. Messerer DAC, et al. Nat Rev Nephrol. 2021 Feb;17(2):91-111. doi: 10.1038/s41581-020-00344-9. Epub 2020 Sep 21. Nat Rev Nephrol. 2021. PMID: 32958893 Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources