A comparison of statistical methods for analysis of high density oligonucleotide array data - PubMed (original) (raw)
Comparative Study
. 2003 Aug 12;19(12):1469-76.
doi: 10.1093/bioinformatics/btg202.
Affiliations
- PMID: 12912826
- DOI: 10.1093/bioinformatics/btg202
Comparative Study
A comparison of statistical methods for analysis of high density oligonucleotide array data
Dilip Rajagopalan. Bioinformatics. 2003.
Abstract
Motivation: Gene expression profiling has become an invaluable tool in functional genomics. A wide variety of statistical methods have been employed to analyze the data generated in experiments using Affymetrix GeneChip microarrays. It is important to understand the relative performance of these methods in terms of accuracy in detecting and quantifying relative gene expression levels and changes in gene expression.
Results: Three different analysis approaches have been compared in this work: non-parametric statistical methods implemented in Affymetrix Microarray Analysis Suite v5.0 (MAS5); an error-modeling based approach implemented in Rosetta Resolver v3.1; and an intensity-modeling approach implemented in dChip v1.1. A Latin Square data set generated and made available by Affymetrix was used in the comparison. All three methods-Resolver, MAS5 and the version of dChip based on the difference between perfect match and mismatch intensities-perform well in quantifying gene expression. Presence calls made by MAS5 and Resolver perform well at high concentrations, but they cannot be relied upon at low concentrations. The performance of Resolver and MAS5 in detecting 2-fold changes in transcript concentration is superior to that of dChip. At a comparable false positive rate, Resolver and MAS5 are able to detect many more true changes in transcript concentration. Estimated fold changes calculated by all the methods are biased below the true values.
Similar articles
- Statistical analysis of high-density oligonucleotide arrays: a multiplicative noise model.
Sásik R, Calvo E, Corbeil J. Sásik R, et al. Bioinformatics. 2002 Dec;18(12):1633-40. doi: 10.1093/bioinformatics/18.12.1633. Bioinformatics. 2002. PMID: 12490448 - Interactively optimizing signal-to-noise ratios in expression profiling: project-specific algorithm selection and detection p-value weighting in Affymetrix microarrays.
Seo J, Bakay M, Chen YW, Hilmer S, Shneiderman B, Hoffman EP. Seo J, et al. Bioinformatics. 2004 Nov 1;20(16):2534-44. doi: 10.1093/bioinformatics/bth280. Epub 2004 Apr 29. Bioinformatics. 2004. PMID: 15117752 - How to decide? Different methods of calculating gene expression from short oligonucleotide array data will give different results.
Millenaar FF, Okyere J, May ST, van Zanten M, Voesenek LA, Peeters AJ. Millenaar FF, et al. BMC Bioinformatics. 2006 Mar 15;7:137. doi: 10.1186/1471-2105-7-137. BMC Bioinformatics. 2006. PMID: 16539732 Free PMC article. - An expression index for Affymetrix GeneChips based on the generalized logarithm.
Zhou L, Rocke DM. Zhou L, et al. Bioinformatics. 2005 Nov 1;21(21):3983-9. doi: 10.1093/bioinformatics/bti665. Epub 2005 Sep 13. Bioinformatics. 2005. PMID: 16159924 - Detection call algorithms for high-throughput gene expression microarray data.
Archer KJ, Reese SE. Archer KJ, et al. Brief Bioinform. 2010 Mar;11(2):244-52. doi: 10.1093/bib/bbp055. Epub 2009 Nov 25. Brief Bioinform. 2010. PMID: 19939941 Free PMC article. Review.
Cited by
- In vitro identification and in silico utilization of interspecies sequence similarities using GeneChip technology.
Grigoryev DN, Ma SF, Simon BA, Irizarry RA, Ye SQ, Garcia JG. Grigoryev DN, et al. BMC Genomics. 2005 May 4;6:62. doi: 10.1186/1471-2164-6-62. BMC Genomics. 2005. PMID: 15871745 Free PMC article. - Overexpression of GATA1 confers resistance to chemotherapy in acute megakaryocytic Leukemia.
Caldwell JT, Edwards H, Dombkowski AA, Buck SA, Matherly LH, Ge Y, Taub JW. Caldwell JT, et al. PLoS One. 2013 Jul 10;8(7):e68601. doi: 10.1371/journal.pone.0068601. Print 2013. PLoS One. 2013. PMID: 23874683 Free PMC article. - Genetic subtraction profiling identifies genes essential for Arabidopsis reproduction and reveals interaction between the female gametophyte and the maternal sporophyte.
Johnston AJ, Meier P, Gheyselinck J, Wuest SE, Federer M, Schlagenhauf E, Becker JD, Grossniklaus U. Johnston AJ, et al. Genome Biol. 2007;8(10):R204. doi: 10.1186/gb-2007-8-10-r204. Genome Biol. 2007. PMID: 17915010 Free PMC article. - Microarray analysis of juvenile hormone response in Drosophila melanogaster S2 cells.
Willis DK, Wang J, Lindholm JR, Orth A, Goodman WG. Willis DK, et al. J Insect Sci. 2010;10:66. doi: 10.1673/031.010.6601. J Insect Sci. 2010. PMID: 20672983 Free PMC article. - Transcriptional profiling provides insights into metronomic cyclophosphamide-activated, innate immune-dependent regression of brain tumor xenografts.
Doloff JC, Waxman DJ. Doloff JC, et al. BMC Cancer. 2015 May 8;15:375. doi: 10.1186/s12885-015-1358-y. BMC Cancer. 2015. PMID: 25952672 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources