Genetic variation in hypoxia-inducible factor 1alpha and its possible association with high altitude adaptation in Sherpas - PubMed (original) (raw)
Comparative Study
Genetic variation in hypoxia-inducible factor 1alpha and its possible association with high altitude adaptation in Sherpas
K Suzuki et al. Med Hypotheses. 2003 Sep.
Abstract
Hypoxic stress at high altitude requires adaptations in several physiological functions to ensure the optimal oxygenation of all cells. Several lines of evidence suggested that high-altitude native populations such as Sherpas have been genetically adapted to their stressful environment. We investigated the genetic variation in the hypoxia-inducible factor (HIF)-1alpha gene in Sherpas as compared with Japanese, native lowlanders, and found a novel dinucleotide repeat polymorphism in intron 13 of the HIF-1alpha gene. GT15 allele was more frequent in Japanese than in Sherpas with statistical significance, while GT14 allele was significantly more frequent in Sherpas as compared with Japanese. A possible genetic variation in the HIF-1alpha gene might function in adaptation to living at high altitude. Because the activity of HIF-1 is regulated by multiple steps including the transcriptional level, the effect of the polymorphism in intron 13 on the cellular hypoxic responses remains to be elucidated.
Similar articles
- [Association of polymorphisms of 1772 (C-->T) and 1790 (G-->A) in HIF1A gene with hypoxia adaptation in high altitude in Sherpas].
Liu KX, Sun XC, Wang SW, Hu B. Liu KX, et al. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2007 Apr;24(2):230-2. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2007. PMID: 17407091 Chinese. - Genetic variants in EPAS1 contribute to adaptation to high-altitude hypoxia in Sherpas.
Hanaoka M, Droma Y, Basnyat B, Ito M, Kobayashi N, Katsuyama Y, Kubo K, Ota M. Hanaoka M, et al. PLoS One. 2012;7(12):e50566. doi: 10.1371/journal.pone.0050566. Epub 2012 Dec 5. PLoS One. 2012. PMID: 23227185 Free PMC article. - Genetic adaptation of the hypoxia-inducible factor pathway to oxygen pressure among eurasian human populations.
Ji LD, Qiu YQ, Xu J, Irwin DM, Tam SC, Tang NL, Zhang YP. Ji LD, et al. Mol Biol Evol. 2012 Nov;29(11):3359-70. doi: 10.1093/molbev/mss144. Epub 2012 May 23. Mol Biol Evol. 2012. PMID: 22628534 - Muscle tissue adaptations to hypoxia.
Hoppeler H, Vogt M. Hoppeler H, et al. J Exp Biol. 2001 Sep;204(Pt 18):3133-9. doi: 10.1242/jeb.204.18.3133. J Exp Biol. 2001. PMID: 11581327 Review. - Fine tuning the HIF-1 'global' O2 sensor for hypobaric hypoxia in Andean high-altitude natives.
Hochachka PW, Rupert JL. Hochachka PW, et al. Bioessays. 2003 May;25(5):515-9. doi: 10.1002/bies.10261. Bioessays. 2003. PMID: 12717822 Review.
Cited by
- The impact of COVID-19 on populations living at high altitude: Role of hypoxia-inducible factors (HIFs) signaling pathway in SARS-CoV-2 infection and replication.
Devaux CA, Raoult D. Devaux CA, et al. Front Physiol. 2022 Aug 25;13:960308. doi: 10.3389/fphys.2022.960308. eCollection 2022. Front Physiol. 2022. PMID: 36091390 Free PMC article. - A role for succinate dehydrogenase genes in low chemoresponsiveness to hypoxia?
Richalet JP, Gimenez-Roqueplo AP, Peyrard S, Vénisse A, Marelle L, Burnichon N, Bouzamondo A, Jeunemaitre X, Azizi M, Elghozi JL. Richalet JP, et al. Clin Auton Res. 2009 Dec;19(6):335-42. doi: 10.1007/s10286-009-0028-z. Clin Auton Res. 2009. PMID: 19768395 - Mitochondrial responses to extreme environments: insights from metabolomics.
O'Brien KA, Griffin JL, Murray AJ, Edwards LM. O'Brien KA, et al. Extrem Physiol Med. 2015 May 4;4:7. doi: 10.1186/s13728-015-0026-9. eCollection 2015. Extrem Physiol Med. 2015. PMID: 25949809 Free PMC article. - High altitude adaptation in Daghestani populations from the Caucasus.
Pagani L, Ayub Q, MacArthur DG, Xue Y, Baillie JK, Chen Y, Kozarewa I, Turner DJ, Tofanelli S, Bulayeva K, Kidd K, Paoli G, Tyler-Smith C. Pagani L, et al. Hum Genet. 2012 Mar;131(3):423-33. doi: 10.1007/s00439-011-1084-8. Epub 2011 Sep 9. Hum Genet. 2012. PMID: 21904933 Free PMC article. - Extreme Hypoxia Causing Brady-Arrythmias During Apnea in Elite Breath-Hold Divers.
Kjeld T, Isbrand AB, Linnet K, Zerahn B, Højberg J, Hansen EG, Gormsen LC, Bejder J, Krag T, Vissing J, Bøtker HE, Arendrup HC. Kjeld T, et al. Front Physiol. 2021 Dec 3;12:712573. doi: 10.3389/fphys.2021.712573. eCollection 2021. Front Physiol. 2021. PMID: 34925050 Free PMC article.