The junctional adhesion molecule (JAM) family members JAM-2 and JAM-3 associate with the cell polarity protein PAR-3: a possible role for JAMs in endothelial cell polarity - PubMed (original) (raw)

. 2003 Oct 1;116(Pt 19):3879-91.

doi: 10.1242/jcs.00704.

Affiliations

The junctional adhesion molecule (JAM) family members JAM-2 and JAM-3 associate with the cell polarity protein PAR-3: a possible role for JAMs in endothelial cell polarity

Klaus Ebnet et al. J Cell Sci. 2003.

Abstract

Tight junctions play a central role in the establishment of cell polarity in vertebrate endothelial and epithelial cells. A ternary protein complex consisting of the cell polarity proteins PAR-3 and PAR-6 and the atypical protein kinase C localizes at tight junctions and is crucial for tight junction formation. We have recently shown that PAR-3 directly associates with the junctional adhesion molecule (JAM), which suggests that the ternary complex is targeted to tight junctions of epithelial cells through PAR-3 binding to JAM. The expression of JAM-related proteins by endothelial cells prompted us to test whether recruitment of the ternary complex in endothelial cells can occur through binding to JAM-2, JAM-3, endothelial cell-selective adhesion molecule (ESAM) or coxsackie- and adenovirus receptor (CAR). Here we show that the two JAM-related proteins JAM-2 and JAM-3 directly associate with PAR-3. The association between PAR-3 and JAM-2/-3 is mediated through the first PDZ domain of PAR-3. In agreement with the predominant expression of JAM-2 and JAM-3 in endothelial cells, we found that PAR-3 is expressed by endothelial cells in vivo and is localized at cell contacts of cultured endothelial cells. PAR-3 associates with JAM-2/-3 but not with the JAM-related Ig-superfamily members ESAM or CAR. In addition, we show that the tight junction-associated protein ZO-1 associates with JAM-2/-3 in a PDZ domain-dependent manner. Using ectopic expression of JAM-2 in CHO cells, we show that the junctional localization of JAM-2 is regulated by serine phosphorylation and that its clustering at cell-cell contacts recruits endogenous PAR-3 and ZO-1. Our findings suggest that JAM-2 affects endothelial cell junctions by its regulated clustering at intercellular contacts, and they support a role for JAM-2, and possibly JAM-3, in tight junction formation of endothelial cells.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources