Sleep, waking and neurobehavioural performance - PubMed (original) (raw)
Review
doi: 10.2741/1174.
Affiliations
- PMID: 12957855
- DOI: 10.2741/1174
Review
Sleep, waking and neurobehavioural performance
Naomi L Rogers et al. Front Biosci. 2003.
Abstract
Waking neurobehavioural or cognitive functioning is largely dependent on two mechanisms both in synchrony and in opposition to each other: the sleep homeostatic and circadian systems. The influences of these systems are particularly evident during periods of sustained wakefulness or sleep deprivation. Although the effects of these two systems on neurobehavioural functioning during periods of extended wakefulness have been demonstrated experimentally, there does not exist an adequate theory to describe the underlying brain mechanisms responsible for these neurobehavioural deficits. Much research has in fact concentrated not on understanding the nature of these deficits, but rather in counteracting them, via the use of countermeasures, such as naps and wake promoting compounds.
Similar articles
- The effects of a split sleep-wake schedule on neurobehavioural performance and predictions of performance under conditions of forced desynchrony.
Kosmadopoulos A, Sargent C, Darwent D, Zhou X, Dawson D, Roach GD. Kosmadopoulos A, et al. Chronobiol Int. 2014 Dec;31(10):1209-17. doi: 10.3109/07420528.2014.957763. Epub 2014 Sep 15. Chronobiol Int. 2014. PMID: 25222348 - Post-sleep inertia performance benefits of longer naps in simulated nightwork and extended operations.
Mulrine HM, Signal TL, van den Berg MJ, Gander PH. Mulrine HM, et al. Chronobiol Int. 2012 Nov;29(9):1249-57. doi: 10.3109/07420528.2012.719957. Epub 2012 Sep 24. Chronobiol Int. 2012. PMID: 23002951 Clinical Trial. - Interindividual variability in neurobehavioral response to sleep loss: A comprehensive review.
Tkachenko O, Dinges DF. Tkachenko O, et al. Neurosci Biobehav Rev. 2018 Jun;89:29-48. doi: 10.1016/j.neubiorev.2018.03.017. Epub 2018 Mar 18. Neurosci Biobehav Rev. 2018. PMID: 29563066 Review. - Neurobehavioral Effects and Biomarkers of Sleep Loss in Healthy Adults.
Goel N. Goel N. Curr Neurol Neurosci Rep. 2017 Sep 25;17(11):89. doi: 10.1007/s11910-017-0799-x. Curr Neurol Neurosci Rep. 2017. PMID: 28944399 Review.
Cited by
- The perilipin homologue, lipid storage droplet 2, regulates sleep homeostasis and prevents learning impairments following sleep loss.
Thimgan MS, Suzuki Y, Seugnet L, Gottschalk L, Shaw PJ. Thimgan MS, et al. PLoS Biol. 2010 Aug 31;8(8):e1000466. doi: 10.1371/journal.pbio.1000466. PLoS Biol. 2010. PMID: 20824166 Free PMC article. - Effects of 36 hours of sleep deprivation on military-related tasks: Can ammonium inhalants maintain performance?
Maleček J, Omcirk D, Skálová K, Pádecký J, Janikov MT, Obrtel M, Jonáš M, Kolář D, Michalička V, Sýkora K, Vágner M, Přívětivý L, Větrovský T, Bendová Z, Třebický V, Tufano JJ. Maleček J, et al. PLoS One. 2023 Nov 15;18(11):e0293804. doi: 10.1371/journal.pone.0293804. eCollection 2023. PLoS One. 2023. PMID: 37967128 Free PMC article. - PVT lapses differ according to eyes open, closed, or looking away.
Anderson C, Wales AW, Horne JA. Anderson C, et al. Sleep. 2010 Feb;33(2):197-204. doi: 10.1093/sleep/33.2.197. Sleep. 2010. PMID: 20175403 Free PMC article. - Sleep after spatial learning promotes covert reorganization of brain activity.
Orban P, Rauchs G, Balteau E, Degueldre C, Luxen A, Maquet P, Peigneux P. Orban P, et al. Proc Natl Acad Sci U S A. 2006 May 2;103(18):7124-9. doi: 10.1073/pnas.0510198103. Epub 2006 Apr 24. Proc Natl Acad Sci U S A. 2006. PMID: 16636288 Free PMC article. - Dissociable effects of self-reported daily sleep duration on high-level cognitive abilities.
Wild CJ, Nichols ES, Battista ME, Stojanoski B, Owen AM. Wild CJ, et al. Sleep. 2018 Dec 1;41(12):zsy182. doi: 10.1093/sleep/zsy182. Sleep. 2018. PMID: 30212878 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Other Literature Sources