Novel monoclonal antibodies demonstrate biochemical variation of brain parkin with age - PubMed (original) (raw)
. 2003 Nov 28;278(48):48120-8.
doi: 10.1074/jbc.M306889200. Epub 2003 Sep 12.
Affiliations
- PMID: 12972409
- DOI: 10.1074/jbc.M306889200
Free article
Novel monoclonal antibodies demonstrate biochemical variation of brain parkin with age
Aaron C Pawlyk et al. J Biol Chem. 2003.
Free article
Abstract
Autosomal recessive juvenile parkinsonism is a movement disorder associated with the degeneration of dopaminergic neurons in substantia nigra pars compacta. The loss of functional parkin caused by parkin gene mutations is the most common single cause of juvenile parkinsonism. Parkin has been shown to aid in protecting cells from endoplasmic reticulum and oxidative stressors presumably due to ubiquitin ligase activity of parkin that targets proteins for proteasomal degradation. However, studies on parkin have been impeded because of limited reagents specific for this protein. Here we report the generation and characterization of a panel of parkin-specific monoclonal antibodies. Biochemical analyses indicate that parkin is present only in the high salt-extractable fraction of mouse brain, whereas it is present in both the high salt-extractable and RIPA-resistant, SDS-extractable fraction in young human brain. Parkin is present at decreased levels in the high salt-extractable fraction and at increased levels in the SDS-extractable fraction from aged human brain. This shift in the extractability of parkin upon aging is seen in humans but not in mice, demonstrating species-specific differences in the biochemical characteristics of murine versus human parkin. Finally, by using these highly specific anti-parkin monoclonal antibodies, it was not possible to detect parkin in alpha-synuclein-containing lesions in alpha-synucleinopathies, thereby challenging prior inferences about the role of parkin in movement disorders other than autosomal recessive juvenile parkinsonism.
Similar articles
- Parkin ubiquitinates and promotes the degradation of RanBP2.
Um JW, Min DS, Rhim H, Kim J, Paik SR, Chung KC. Um JW, et al. J Biol Chem. 2006 Feb 10;281(6):3595-603. doi: 10.1074/jbc.M504994200. Epub 2005 Dec 6. J Biol Chem. 2006. PMID: 16332688 - Parkin-positive autosomal recessive juvenile Parkinsonism with alpha-synuclein-positive inclusions.
Sasaki S, Shirata A, Yamane K, Iwata M. Sasaki S, et al. Neurology. 2004 Aug 24;63(4):678-82. doi: 10.1212/01.wnl.0000134657.25904.0b. Neurology. 2004. PMID: 15326242 - Dopamine covalently modifies and functionally inactivates parkin.
LaVoie MJ, Ostaszewski BL, Weihofen A, Schlossmacher MG, Selkoe DJ. LaVoie MJ, et al. Nat Med. 2005 Nov;11(11):1214-21. doi: 10.1038/nm1314. Epub 2005 Oct 16. Nat Med. 2005. PMID: 16227987 - How does parkin ligate ubiquitin to Parkinson's disease?
Kahle PJ, Haass C. Kahle PJ, et al. EMBO Rep. 2004 Jul;5(7):681-5. doi: 10.1038/sj.embor.7400188. EMBO Rep. 2004. PMID: 15229644 Free PMC article. Review. - The synaptic function of parkin.
Sassone J, Serratto G, Valtorta F, Silani V, Passafaro M, Ciammola A. Sassone J, et al. Brain. 2017 Sep 1;140(9):2265-2272. doi: 10.1093/brain/awx006. Brain. 2017. PMID: 28335015 Review.
Cited by
- Pathologic and therapeutic implications for the cell biology of parkin.
Charan RA, LaVoie MJ. Charan RA, et al. Mol Cell Neurosci. 2015 May;66(Pt A):62-71. doi: 10.1016/j.mcn.2015.02.008. Epub 2015 Feb 17. Mol Cell Neurosci. 2015. PMID: 25697646 Free PMC article. Review. - Parkin deficiency delays motor decline and disease manifestation in a mouse model of synucleinopathy.
Fournier M, Vitte J, Garrigue J, Langui D, Dullin JP, Saurini F, Hanoun N, Perez-Diaz F, Cornilleau F, Joubert C, Ardila-Osorio H, Traver S, Duchateau R, Goujet-Zalc C, Paleologou K, Lashuel HA, Haass C, Duyckaerts C, Cohen-Salmon C, Kahle PJ, Hamon M, Brice A, Corti O. Fournier M, et al. PLoS One. 2009 Aug 14;4(8):e6629. doi: 10.1371/journal.pone.0006629. PLoS One. 2009. PMID: 19680561 Free PMC article. - Topology-dependent, bifurcated mitochondrial quality control under starvation.
Zhou Y, Long Q, Wu H, Li W, Qi J, Wu Y, Xiang G, Tang H, Yang L, Chen K, Li L, Bao F, Li H, Wang Y, Li M, Liu X. Zhou Y, et al. Autophagy. 2020 Mar;16(3):562-574. doi: 10.1080/15548627.2019.1634944. Epub 2019 Jul 4. Autophagy. 2020. PMID: 31234709 Free PMC article. - L-DOPA impairs proteasome activity in parkinsonism through D1 dopamine receptor.
Berthet A, Bezard E, Porras G, Fasano S, Barroso-Chinea P, Dehay B, Martinez A, Thiolat ML, Nosten-Bertrand M, Giros B, Baufreton J, Li Q, Bloch B, Martin-Negrier ML. Berthet A, et al. J Neurosci. 2012 Jan 11;32(2):681-91. doi: 10.1523/JNEUROSCI.1541-11.2012. J Neurosci. 2012. PMID: 22238104 Free PMC article. - Potential roles of neuronal nitric oxide synthase and the PTEN-induced kinase 1 (PINK1)/Parkin pathway for mitochondrial protein degradation in disuse-induced soleus muscle atrophy in adult rats.
Uda M, Yoshihara T, Ichinoseki-Sekine N, Baba T, Yoshioka T. Uda M, et al. PLoS One. 2020 Dec 9;15(12):e0243660. doi: 10.1371/journal.pone.0243660. eCollection 2020. PLoS One. 2020. PMID: 33296434 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous