Molecular cloning, sequencing, and physiological characterization of the qox operon from Bacillus subtilis encoding the aa3-600 quinol oxidase - PubMed (original) (raw)
. 1992 May 25;267(15):10225-31.
Affiliations
- PMID: 1316894
Free article
Molecular cloning, sequencing, and physiological characterization of the qox operon from Bacillus subtilis encoding the aa3-600 quinol oxidase
M Santana et al. J Biol Chem. 1992.
Free article
Abstract
Bacillus subtilis contains two aa3-type terminal oxidases (caa3-605 and aa3-600) catalyzing cytochrome c and quinol oxidation, respectively, with the concomitant reduction of O2 to H2O (Lauraeus, M., Haltia, T., Saraste, M., and Wikström, M. (1991) Eur. J. Biochem. 197, 699-705). Previous studies characterized only the structural genes of caa3-605 oxidase. We isolated the genes coding for the four subunits of a B. subtilis terminal oxidase from a genomic DNA library. These genes, named qoxA to qoxD, are organized in an operon. Examination of the deduced amino acid sequence of Qox subunits showed that this oxidase is structurally related to the large family of mitochondrial-type aa3 terminal oxidases. In particular, the amino acid sequences are very similar to those of subunits of Escherichia coli bo quinol oxidase and B. subtilis caa3-605 cytochrome c oxidase. We produced, by in vitro mutagenesis, a mutation in the qox operon. From the phenotype of the mutant strain devoid of Qox protein, the study of expression of the qox operon in different growth conditions, and the analysis of the deduced amino acid sequence of the subunits, we concluded that Qox protein and aa3-600 quinol oxidase are the same protein. Although several terminal oxidases are found in B. subtilis, Qox oxidase (aa3-600) is predominant during the vegetative growth and its absence leads to important alterations of the phenotype of B. subtilis.
Similar articles
- Functional analysis of subunits III and IV of Bacillus subtilis aa3-600 quinol oxidase by in vitro mutagenesis and gene replacement.
Villani G, Tattoli M, Capitanio N, Glaser P, Papa S, Danchin A. Villani G, et al. Biochim Biophys Acta. 1995 Nov 21;1232(1-2):67-74. doi: 10.1016/0005-2728(95)00112-5. Biochim Biophys Acta. 1995. PMID: 7495838 - Prediction of high- and low-affinity quinol-analogue-binding sites in the aa3 and bo3 terminal oxidases from Bacillus subtilis and Escherichia coli1.
Bossis F, De Grassi A, Palese LL, Pierri CL. Bossis F, et al. Biochem J. 2014 Jul 15;461(2):305-14. doi: 10.1042/BJ20140082. Biochem J. 2014. PMID: 24779955 - The proton pump of heme-copper oxidases.
Papa S, Capitanio N, Glaser P, Villani G. Papa S, et al. Cell Biol Int. 1994 May;18(5):345-55. doi: 10.1006/cbir.1994.1084. Cell Biol Int. 1994. PMID: 8049679 Review. - Heme-copper oxidases and their electron donors in cyanobacterial respiratory electron transport.
Bernroitner M, Zamocky M, Pairer M, Furtmüller PG, Peschek GA, Obinger C. Bernroitner M, et al. Chem Biodivers. 2008 Oct;5(10):1927-1961. doi: 10.1002/cbdv.200890180. Chem Biodivers. 2008. PMID: 18972533 Review.
Cited by
- Bacillus subtilis metabolism and energetics in carbon-limited and excess-carbon chemostat culture.
Dauner M, Storni T, Sauer U. Dauner M, et al. J Bacteriol. 2001 Dec;183(24):7308-17. doi: 10.1128/JB.183.24.7308-7317.2001. J Bacteriol. 2001. PMID: 11717290 Free PMC article. - Crucial role for central carbon metabolism in the bacterial L-form switch and killing by β-lactam antibiotics.
Kawai Y, Mercier R, Mickiewicz K, Serafini A, Sório de Carvalho LP, Errington J. Kawai Y, et al. Nat Microbiol. 2019 Oct;4(10):1716-1726. doi: 10.1038/s41564-019-0497-3. Epub 2019 Jul 8. Nat Microbiol. 2019. PMID: 31285586 Free PMC article. - The sequence of electron carriers in the reaction of cytochrome c oxidase with oxygen.
Hill BC. Hill BC. J Bioenerg Biomembr. 1993 Apr;25(2):115-20. doi: 10.1007/BF00762853. J Bioenerg Biomembr. 1993. PMID: 8389744 Review. - Evolution of cytochrome oxidase, an enzyme older than atmospheric oxygen.
Castresana J, Lübben M, Saraste M, Higgins DG. Castresana J, et al. EMBO J. 1994 Jun 1;13(11):2516-25. doi: 10.1002/j.1460-2075.1994.tb06541.x. EMBO J. 1994. PMID: 8013452 Free PMC article. - Bacillus subtilis ResD induces expression of the potential regulatory genes yclJK upon oxygen limitation.
Härtig E, Geng H, Hartmann A, Hubacek A, Münch R, Ye RW, Jahn D, Nakano MM. Härtig E, et al. J Bacteriol. 2004 Oct;186(19):6477-84. doi: 10.1128/JB.186.19.6477-6484.2004. J Bacteriol. 2004. PMID: 15375128 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases