Lilly Lecture: molecular mechanisms of insulin resistance. Lessons from patients with mutations in the insulin-receptor gene - PubMed (original) (raw)

Review

. 1992 Nov;41(11):1473-90.

doi: 10.2337/diab.41.11.1473.

Affiliations

Review

Lilly Lecture: molecular mechanisms of insulin resistance. Lessons from patients with mutations in the insulin-receptor gene

S I Taylor. Diabetes. 1992 Nov.

Abstract

Insulin resistance contributes to the pathogenesis of NIDDM. We have investigated the molecular mechanisms of insulin resistance in patients with genetic syndromes caused by mutations in the insulin-receptor gene. In general, patients with two mutant alleles of the insulin-receptor gene are more severely insulin-resistant than are patients who are heterozygous for a single mutant allele. These mutations can be put into five classes, depending upon the mechanisms by which they impair receptor function. Some mutations lead to a decrease in the number of insulin receptors on the cell surface. For example, some mutations decrease the level of insulin receptor mRNA or impair receptor biosynthesis by introducing a premature chain termination codon (class 1). Class 2 mutations impair the transport of receptors through the endoplasmic reticulum and Golgi apparatus to the plasma membrane. Mutations that accelerate the rate of receptor degradation (class 5) also decrease the number of receptors on the cell surface. Other mutations cause insulin resistance by impairing receptor function--either by decreasing the affinity to bind insulin (class 3) or by impairing receptor tyrosine kinase activity (class 4). The prevalence of mutations in the insulin receptor gene is not known. However, theoretical calculations suggest that approximately 0.1-1% of the general population are heterozygous for a mutation in the insulin-receptor gene; the prevalence is likely to be higher among people with NIDDM. Accordingly, it is likely that mutations in the insulin-receptor gene may be a contributory cause of insulin resistance in a subpopulation with NIDDM.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources