Cloning and expression of murine IL-12 - PubMed (original) (raw)

. 1992 Jun 1;148(11):3433-40.

Affiliations

Cloning and expression of murine IL-12

D S Schoenhaut et al. J Immunol. 1992.

Abstract

Human IL-12 (NK cell stimulatory factor, cytotoxic lymphocyte maturation factor) is a heterodimeric cytokine that can act as a growth factor for activated human T and NK cells, enhance the lytic activity of human NK/lymphokine-activated killer cells, and stimulate the production of IFN-gamma by resting human PBMC. Because in our hands, human IL-12 did not elicit similar responses in murine lymphocytes, we have cloned and expressed the murine IL-12 subunit cDNA in order to obtain recombinant protein for murine studies. Comparison of the predicted amino acid sequences of the murine subunits with their human counterparts revealed that the p40 subunits are more highly conserved than the p35 subunits (70% vs 60% identity, respectively). The sizes of the p35 and p40 subunit mRNA were estimated to be 1.5 kb and 2.6 kb, respectively. RNA blot analysis showed that p35 mRNA was expressed in lymphoid tissues (spleen, thymus) and nonlymphoid tissues (lung, brain), whereas p40 mRNA expression was only detected in lymphoid cells. Incubation of splenocytes with pokeweed mitogen did not significantly affect p35 mRNA levels, however, it resulted in a decrease of p40 mRNA. Coexpression of the murine p35 and p40 cDNA clones in COS cells resulted in the secretion of IL-12, which was active in human and mouse T cell proliferation, murine NK cell activation, and murine IFN-gamma induction assays. Transfection of each subunit cDNA alone did not result in measurable secreted IL-12 activity. A hybrid heterodimer consisting of murine p35 and human p40 subunits retained bioactivity on murine cells; however, the combination of human p35 and murine p40 was completely inactive on murine cells. These results indicate that the observed inability of human IL-12 to act on murine cells is largely determined by the p35 subunit.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources