Position effect variegation and chromatin proteins - PubMed (original) (raw)
Review
Position effect variegation and chromatin proteins
G Reuter et al. Bioessays. 1992 Sep.
Abstract
Variegated phenotypes often result from chromosomal rearrangements that place euchromatic genes next to heterochromatin. In such rearrangements, the condensed structure of heterochromatin can spread into euchromatic regions, which then assume the morphology of heterochromatin and become transcriptionally inactive. In position-effect variegation (PEV) therefore, gene inactivation results from a change in chromatin structure. PEV has been intensively investigated in the fruitfly Drosophila, where the phenomenon allows a genetic dissection of chromatin components. Consequently, many genes have been identified which, when mutated, act as dominant modifiers (suppressors or enhancers) of PEV. Data available already demonstrate that genetic, molecular and developmental analysis of these genes provides an avenue to the identification of regulatory and structural chromatin components, and hence to fundamental aspects of chromosome structure and function.
Similar articles
- Chromatin structure and the regulation of gene expression: the lessons of PEV in Drosophila.
Girton JR, Johansen KM. Girton JR, et al. Adv Genet. 2008;61:1-43. doi: 10.1016/S0065-2660(07)00001-6. Adv Genet. 2008. PMID: 18282501 Review. - Towards an understanding of position effect variegation.
Tartof KD, Bishop C, Jones M, Hobbs CA, Locke J. Tartof KD, et al. Dev Genet. 1989;10(3):162-76. doi: 10.1002/dvg.1020100306. Dev Genet. 1989. PMID: 2500281 - Position effect variegation in Drosophila: towards a genetics of chromatin assembly.
Eissenberg JC. Eissenberg JC. Bioessays. 1989 Jul;11(1):14-7. doi: 10.1002/bies.950110105. Bioessays. 1989. PMID: 2505764 Review.
Cited by
- Regulation of the heterochromatin spreading reaction by _trans-_acting factors.
Hamali B, Amine AAA, Al-Sady B. Hamali B, et al. Open Biol. 2023 Nov;13(11):230271. doi: 10.1098/rsob.230271. Epub 2023 Nov 8. Open Biol. 2023. PMID: 37935357 Free PMC article. Review. - 3D genome, on repeat: Higher-order folding principles of the heterochromatinized repetitive genome.
Haws SA, Simandi Z, Barnett RJ, Phillips-Cremins JE. Haws SA, et al. Cell. 2022 Jul 21;185(15):2690-2707. doi: 10.1016/j.cell.2022.06.052. Cell. 2022. PMID: 35868274 Free PMC article. Review. - Uncovering Regulators of Heterochromatin Mediated Silencing Using a Zebrafish Transgenic Reporter.
Calvird AE, Broniec MN, Duval KL, Higgs AN, Arora V, Ha LN, Schouten EB, Crippen AR, McGrail M, Laue K, Goll MG. Calvird AE, et al. Front Cell Dev Biol. 2022 Mar 7;10:832461. doi: 10.3389/fcell.2022.832461. eCollection 2022. Front Cell Dev Biol. 2022. PMID: 35356281 Free PMC article. - Transgenerational effect of drug-mediated inhibition of LSD1 on eye pigment expression in Drosophila.
Hoyer-Fender S. Hoyer-Fender S. BMC Ecol. 2020 Nov 23;20(1):62. doi: 10.1186/s12898-020-00330-6. BMC Ecol. 2020. PMID: 33228645 Free PMC article. - Overexpression of a plasma membrane protein generated broad-spectrum immunity in soybean.
Ngaki MN, Sahoo DK, Wang B, Bhattacharyya MK. Ngaki MN, et al. Plant Biotechnol J. 2021 Mar;19(3):502-516. doi: 10.1111/pbi.13479. Epub 2020 Oct 9. Plant Biotechnol J. 2021. PMID: 32954627 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases