Extraordinary stability of enzymes dried in trehalose: simplified molecular biology - PubMed (original) (raw)
. 1992 Sep;10(9):1007-11.
doi: 10.1038/nbt0992-1007.
Affiliations
- PMID: 1369408
- DOI: 10.1038/nbt0992-1007
Extraordinary stability of enzymes dried in trehalose: simplified molecular biology
C Colaço et al. Biotechnology (N Y). 1992 Sep.
Abstract
We show that extremely fragile biomolecules such as DNA restriction and modifying enzymes can be dried in vitro in the presence of trehalose with no loss of activity, even after prolonged storage. A remarkable and unexpected property of the dried enzyme preparations is their ability to withstand prolonged exposure to temperatures as high as +70 degrees C. This stability is unique to trehalose and is not found with other sugars irrespective of their physical or chemical properties. The immediate significance of these observations is the ability to convert enzymes used in molecular biology into stable reagents. The indefinite stability and high temperature tolerance of these dried enzymes should permit the design of convenient formats that may be of particular significance in the automation of genome mapping and sequencing projects. The stabilization of a wide range of biomolecules by trehalose also has practical implications for a number of areas ranging from basic science, through healthcare and agriculture, to bio-electronics.
Similar articles
- Protective effect of disaccharides on restriction endonucleases during drying under vacuum.
Uritani M, Takai M, Yoshinaga K. Uritani M, et al. J Biochem. 1995 Apr;117(4):774-9. doi: 10.1093/oxfordjournals.jbchem.a124775. J Biochem. 1995. PMID: 7592538 - Stabilization of the restriction enzyme EcoRI dried with trehalose and other selected glass-forming solutes.
Rossi S, Buera MP, Moreno S, Chirife J. Rossi S, et al. Biotechnol Prog. 1997 Sep-Oct;13(5):609-16. doi: 10.1021/bp970061+. Biotechnol Prog. 1997. PMID: 9336981 - Extended stability of restriction enzymes at ambient temperatures.
Clark J, Harrison JC, Mdegela RH, March JB. Clark J, et al. Biotechniques. 2000 Sep;29(3):536-8, 540, 542. doi: 10.2144/00293st06. Biotechniques. 2000. PMID: 10997268 - Portraits of viruses: bacteriophage lambda.
Hayes W. Hayes W. Intervirology. 1980;13(3):133-53. doi: 10.1159/000149119. Intervirology. 1980. PMID: 6246031 Review. No abstract available. - Restriction and modification enzymes and their recognition sequences.
Roberts RJ. Roberts RJ. Gene. 1980 Mar;8(4):329-43. doi: 10.1016/0378-1119(80)90040-2. Gene. 1980. PMID: 6245015 Review. No abstract available.
Cited by
- Trehalose-enzyme interactions result in structure stabilization and activity inhibition. The role of viscosity.
Sampedro JG, Uribe S. Sampedro JG, et al. Mol Cell Biochem. 2004 Jan-Feb;256-257(1-2):319-27. doi: 10.1023/b:mcbi.0000009878.21929.eb. Mol Cell Biochem. 2004. PMID: 14977191 - Effects of Osmoprotectants upon NaCl Stress in Rice.
Garcia AB, Engler J, Iyer S, Gerats T, Van Montagu M, Caplan AB. Garcia AB, et al. Plant Physiol. 1997 Sep;115(1):159-169. doi: 10.1104/pp.115.1.159. Plant Physiol. 1997. PMID: 12223797 Free PMC article. - The use of trehalose in the preparation of specimens for molecular electron microscopy.
Chiu PL, Kelly DF, Walz T. Chiu PL, et al. Micron. 2011 Dec;42(8):762-72. doi: 10.1016/j.micron.2011.06.005. Epub 2011 Jun 25. Micron. 2011. PMID: 21752659 Free PMC article. Review. - Dietary Trehalose as a Bioactive Nutrient.
Chen A, Gibney PA. Chen A, et al. Nutrients. 2023 Mar 14;15(6):1393. doi: 10.3390/nu15061393. Nutrients. 2023. PMID: 36986123 Free PMC article. Review. - Rapid method for isolation of desiccation-tolerant strains and xeroprotectants.
Narváez-Reinaldo JJ, Barba I, González-López J, Tunnacliffe A, Manzanera M. Narváez-Reinaldo JJ, et al. Appl Environ Microbiol. 2010 Aug;76(15):5254-62. doi: 10.1128/AEM.00855-10. Epub 2010 Jun 18. Appl Environ Microbiol. 2010. PMID: 20562279 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Other Literature Sources
Molecular Biology Databases