Antibodies to defined histone epitopes reveal variations in chromatin conformation and underacetylation of centric heterochromatin in human metaphase chromosomes - PubMed (original) (raw)
. 1992 Mar;101(5-6):322-32.
doi: 10.1007/BF00346011.
Affiliations
- PMID: 1374304
- DOI: 10.1007/BF00346011
Antibodies to defined histone epitopes reveal variations in chromatin conformation and underacetylation of centric heterochromatin in human metaphase chromosomes
P Jeppesen et al. Chromosoma. 1992 Mar.
Abstract
Unfixed metaphase chromosome preparations from human lymphocyte cultures were immunofluorescently labelled using antibodies to defined histone epitopes. Both mouse monoclonal antibody HBC-7, raised against the N-terminal region of H2B, and rabbit serum R5/12, which recognizes H4 acetylated at Lys-12, gave non-uniform labelling patterns, whereas control antibodies against total histone fractions H4 and H1 produced homogeneous fluorescence. HBC-7 bound approximately uniformly to the bulk of the chromosomes, but the major heterochromatic domains of chromosomes 1, 9, 15, 16 and the Y showed significantly brighter fluorescence. Serum R5/12 indicated an overall reduction in acetylation of H4 in metaphase chromosomes compared with interphase nuclei, although some specific chromosomal locations had considerably elevated acetylation levels. Acetylation levels in the major heterochromatic domains appeared extremely low. To investigate further the differences noted in heterochromatin labelling, metaphases from cultures grown in the presence of various agents known to induce undercondensation of the major heterochromatic domains were similarly immunolabelled. Decondensed heterochromatin no longer exhibited higher than normal immunofluorescence levels with HBC-7. The higher resolution afforded by "stretching" the centromeric heterochromatin of chromosomes 1, 9 and 16 confirmed the low level of H4 acetylation in these domains. We consider the implications of these observations in relation to chromatin conformation and activity.
Similar articles
- Histones H1 and H4 of surface-spread meiotic chromosomes.
Moens PB. Moens PB. Chromosoma. 1995 Nov;104(3):169-74. doi: 10.1007/BF00352181. Chromosoma. 1995. PMID: 8529456 - Islands of acetylated histone H4 in polytene chromosomes and their relationship to chromatin packaging and transcriptional activity.
Turner BM, Franchi L, Wallace H. Turner BM, et al. J Cell Sci. 1990 Jun;96 ( Pt 2):335-46. doi: 10.1242/jcs.96.2.335. J Cell Sci. 1990. PMID: 2211873 - Histone H4 underacetylation in plant facultative heterochromatin.
Buzek J, Riha K, Siroky J, Ebert I, Greilhuber J, Vyskot B. Buzek J, et al. Biol Chem. 1998 Oct;379(10):1235-41. doi: 10.1515/bchm.1998.379.10.1235. Biol Chem. 1998. PMID: 9820584 - Histone acetylation: a possible mechanism for the inheritance of cell memory at mitosis.
Jeppesen P. Jeppesen P. Bioessays. 1997 Jan;19(1):67-74. doi: 10.1002/bies.950190111. Bioessays. 1997. PMID: 9008418 Review. - Immunological approaches to chromatin and chromosome structure and function.
Bustin M. Bustin M. Curr Top Microbiol Immunol. 1979;88:105-42. doi: 10.1007/978-3-642-67331-3_3. Curr Top Microbiol Immunol. 1979. PMID: 94283 Review. No abstract available.
Cited by
- Why Do Some Vertebrates Have Microchromosomes?
Srikulnath K, Ahmad SF, Singchat W, Panthum T. Srikulnath K, et al. Cells. 2021 Aug 24;10(9):2182. doi: 10.3390/cells10092182. Cells. 2021. PMID: 34571831 Free PMC article. Review. - Histone modifications form a cell-type-specific chromosomal bar code that persists through the cell cycle.
Halsall JA, Andrews S, Krueger F, Rutledge CE, Ficz G, Reik W, Turner BM. Halsall JA, et al. Sci Rep. 2021 Feb 4;11(1):3009. doi: 10.1038/s41598-021-82539-z. Sci Rep. 2021. PMID: 33542322 Free PMC article. - Developmental differences in genome replication program and origin activation.
Rausch C, Weber P, Prorok P, Hörl D, Maiser A, Lehmkuhl A, Chagin VO, Casas-Delucchi CS, Leonhardt H, Cardoso MC. Rausch C, et al. Nucleic Acids Res. 2020 Dec 16;48(22):12751-12777. doi: 10.1093/nar/gkaa1124. Nucleic Acids Res. 2020. PMID: 33264404 Free PMC article. - Epigenetic Factors That Control Pericentric Heterochromatin Organization in Mammals.
Fioriniello S, Marano D, Fiorillo F, D'Esposito M, Della Ragione F. Fioriniello S, et al. Genes (Basel). 2020 May 28;11(6):595. doi: 10.3390/genes11060595. Genes (Basel). 2020. PMID: 32481609 Free PMC article. Review. - Combined AURKA and H3K9 Methyltransferase Targeting Inhibits Cell Growth By Inducing Mitotic Catastrophe.
Mathison A, Salmonson A, Missfeldt M, Bintz J, Williams M, Kossak S, Nair A, de Assuncao TM, Christensen T, Buttar N, Iovanna J, Huebert R, Lomberk G. Mathison A, et al. Mol Cancer Res. 2017 Aug;15(8):984-997. doi: 10.1158/1541-7786.MCR-17-0063. Epub 2017 Apr 25. Mol Cancer Res. 2017. PMID: 28442587 Free PMC article.
References
- Eur J Biochem. 1986 Jun 16;157(3):513-21 - PubMed
- Cell. 1980 May;20(1):85-93 - PubMed
- Exp Cell Res. 1978 Sep;115(2):293-302 - PubMed
- Proc Natl Acad Sci U S A. 1977 Aug;74(8):3297-301 - PubMed
- Cytogenet Cell Genet. 1983;36(3):554-61 - PubMed